Exam 2 Testing Techniques (271001) — 14 April 2008

To make this exam, you are allowed to have a copy of the lecture notes and the slides. Nothing else. Indicate your name on each separate page that you hand in.

The division of the points is as follows:

exercise 1: 5
exercise 2: 25
exercise 3: 20 We wish you a lot of success!
exercise 4: 30
exercise 5: 20

Exercise 1 (Security testing) In his lecture, Marc Witteman discussed several security attacks. Give two arguments why these attacks can be considered as testing. Also explain a difference between a testing (in the sense of this course) and a security testing.

Exercise 2 (Testing preorders) Consider the LTSs Q_1, Q_2, Q_3, Q_4 below. Their labels sets are $\{a, b, c, d, e, f\}$. Recall that the preorders that we consider are: trace inclusion, completed trace inclusion, testing preorder \leq_{te} and refusal preorder \leq_{rf} .

- 1. Fill in the following table. In each entry (i, j) of the table (*i* are rows, *j* are colums), write the strongest preorder that holds between processes (Q_i, Q_j) (i.e. $Q_i \leq Q_j$). Note:
 - Example: if we have trace inclusion between Q_i and Q_j , but not completed trace inclusion (and hence they are not in the testing preorder and not refusal preorder), then write "trace inclusion" at table position (Q_i, Q_j) .
 - Only fill in the blank positions in the table.
 - If they are not included in any preorder, write a "x".
 - Copy the table on your answer sheet.
- 2. For all process pairs (Q_i, Q_j) , consider the weakest preorder such that (Q_i, Q_j) are not in this preorder. Provide a distinguishing behavior (i.e. trace, completed trace, refusal pair or refusal trace) that shows that they are not in this preorder.

voor dezelfde matrix

Exercise 3 (Testing Equivalences and preorders) In the following exercise, you have to create LTSs over label set $\{a,b,c\}$ with the following properties:

1. p_3 and q_3 are trace equivalent, but not testing equivalent and a distinguishing environment is given by

2. p_5 and q_5 are trace equivalent, but not testing equivalent, and

 p_5 after aaa refuses $\{a,b,c\}$ q_5 after aaa refuses $\{a,b\}$ q_5 after aaa refuses $\{b,c\}$ q_5 after aaa refuses $\{a,c\}$

- 3. p_6 and q_6 are testing equivalent, but not refusal equivalent and $a\{b,c\}a\{b,c\}$ is a failure trace of p_6 , but not of q_6 .
- 4. p_7 and q_7 are testing equivalent, but not refusal equivalent, and a distinguishing environment is given by

Exercise 4 (Test derivation for ioco) A company that produces beer tenders provides the following specification S, with $L_I = \{?\text{beer}, ?\text{repair}\}$ and $L_U = \{!\text{grolsch}, !\text{corona}, !\text{error}\}$.

- 1. Determine the quiescent states in S and construct the suspension automaton (i.e. add δ -loops where needed).
- 2. Give test suites T_1, T_2, T_3 for S with the following properties. Use the ioco test derivation algorithm whenever possible.
 - (a) T_1 is sound, but not complete¹.
 - (b) T_2 is not sound.
 - (c) T_3 is sound and complete.
- 3. Which of the following implementations i_1 , i_2 and i_3 conform to S w.r.t. ioco? For those that are incorrect, provide a test case that exhibits the error.

4. Give an implementation IOLTS i_4 that is ioco-correct with respect to S and which is able to provide a corona after a repair.

¹Recall that the lecture notes uses the word "exhaustive" for this concept

Exercise 5 (True or false?) Are the following statements true? If so, give a proof otherwise give a counter example. Here, p, q are IOLTSs with the same input and output labels, p is input-enabled. Action a is an output action of p and q. Do we have

- 1. Straces(p) = Straces(q), then qtraces(p) = qtraces(q)
- 2. Assume that q contains only output actions. Then p ioco $q \implies p \leq_{tr} q$
- 3. Assume that q is input-enabled. Then $p \leq_{te} q \implies p \ \mathbf{ioco} \ q$
- 4. If p ioco q, then (hide a in p) ioco (hide a in q).