Formal Methods and Tools code: 214012
Facuity of EEMCS EXAMINATION date: 28 August 2008
University of Twente SYSTEM VALIDATION time: 9.00-12.30

m When taking this exam, you are allowed to have a copy of the lecture notes, a copy of the
slides and one book of your own choice.

m The final grade for System Validation is built up from the grade for the SPIN assignment
(5), the grade for the SUMO project (P) and the grade for this written examination (T):
final grade = (S+2x P+2xT)/5

However, if T" is less than 5 then the final grade for System Validation will at most be 4.

® You can earn 100 points with the following 7 questions. The score for the examination is
T = your score /10, rounded to cne digit after the decimal point.

VEEL SUCCES!

Question 1 @5 points)

Suppose we have two users, Koot and Bie, and a single printer device Printer. Both users perform several
tasks, and every now and then they want to print their results on the Printer. Since there is only a single
printer, only one user can print a job at a time. Suppose we have the following atomic propositions for Koot
at our disposal:

= Koot.request — indicates that Keot requests usage of the printer;
m Koot.use — indicates that Koot uses the printer;
m Koot.release — indicates that Koot releases the printer.

For Bie similar predicates are defined.
Specify in Linear Temporal Logic (LTL) the following properties:

a. (3p} Mutual exclusion: only one user at a time can use the printer.
b. {4p) Finite time of usage: a user can print only for a finite amount of time.
C. (4p) Absence of starvation: if a user wants to print something, he eventually is able to do so.

d. (4p) Alternating access: users must strictly alternate in printing,

Question 2 (15 points)

For each property below, give — if possible - an LTL formula expressing the property. If it is not expressible,
explain why. We assume p, ¢, and » to be atomic propositions.

a. After p has happened, ¢ will never be true.

b. The events p and g come in pairs: after each p there will be g before a new p appears. Furthermore
between each pair of p and ¢, r is never true.

Pa parara

banfrd

(P} a ¢ A Qa (o) ana R

System Validation - Examination — 28 August 2008 2

c. Transitions to states satisfying p occur at most twice, i.e. there are most two states in the path where f) 5.
pis true, B’

PiREm: -
d. Eventp alw@ Tecedes ¢. i P"},%Z EPo

e. Property p is true in each ‘odd’ state but false in each ‘even’ state, i.e. p is true in the 1st, 3rd, 5th,
etc. state, but false in the 2nd, 4th, 6th, etc. state.

Question 3 (0 points)

Consider the following Kripke structure M that consists of four states. P Q QQ 'o R Pﬁ&o‘
R@RQ
0 (6} R R&

© (21 PR 4Q

() P

{a} {ab) K
For each of the following formulae ¢ below, f Q £ c[; PR
?) Find an‘mﬁmte path from the initial staté 83 which satisfies ¢, and P g PIKU v Xp
(1) Determine whether M = ¢. If not, provide a counterexample.
The formulae ¢ are the following: P E\
a. ¢ = Ga P
b.¢d =aUb
c. ¢ =at X(aA-b)
d. ¢ = X-b A G(-aV-b) Eat
e. ¢ = X{anb) A F(-aA-b) 5;’
$£ / \Sq
Question 4 (15 points) / a@/ \Sio

The partial order reduction algorithm of Doron Peled (see Chapter 10 of [Clarke et.al. 1999}, i.e. [Peled
1999]) is centralised around four constraints on the set ample(s). The most complicated among the con-
straints is condition C1. Suppose that we replace condition C1 by the following condition C1/, which is
easier to understand and use:

C1’ The transitions in ample(s) are all independent of those in enabled(s)\ ample(s).

G
Is the partial order reduction algorithm still correct when using C1’? %\6
Ss

If yes, give a proof (sketch). If not, explain why it is not correct.
51 / Y S ;/ \S<
ﬂqpq@0:<

.- A DEe oA ﬂ”iﬂ([’/%‘]
S;]-Sw (Avaer pLLag
Mg Sydg fiest 57/7(5(505 : /]1

System Validation - Examination — 28 August 2008 3

Question 5 (20 points)

In this exercise we consider the organisation of the states of the state space of a small system. Each state &
consists of three components; 5.z, 5.y and s.2. During exploration, the following states are being generated
(in the order sg, 51, . .. 39).

[s] sz [siy 5.2 |
S0 3 5 2
81 1 2 3
52 2 4 4
83 2 1 2
84 1 4 6
85 2 1 4
56 1 2 2
57 2 3 2
88 1 5 4
89 2 2 4

You are asked to give the organisation of the resulting state space — i.e. the hash table and its buckets
containing the states themselves — for the following situations.

a. (6p) The state space is organised using a hash table that uses direct chaining. The states themselves
are stored without any form of compression. The hash table has 7 buckets and the following hash
function is being used:

ho(s)=(sz+sy+s52)%7

b. (7p) The state space is organised using a hash table that uses separate chaining and where the states
are stored in a compressed way using the recursive indexing method. Use 2 bits for the index of the
table for s.z. 3 bits for the index of the table for .y and 3 bits for the index of the table for s.z. The
hash table has 11 buckets and the following hash function is being used:

hp(s) = (5.2 + 2 sy +2%5.2) % 11

where s is the original, nen-compressed state,

c. {7p) The states are stored using 2-fold bit-state hashing, using the following two hash-functions

he(s) = hy(s)
hea(s) = (2xsz+sy+s2)%11

The bucket size is 11,
During exploration, which states are wrongly considered to be visited already?

Question 6 (10 points)

Answer the following questions (using at most five sentences for each question):

a. (3p) Suppose the approach of [Kattenbelt et.al. 2007] is used to design and implement a generic
model checker. On what layer should partial order reduction be implemented? Explain your answer.

b. (3p) Virtual machine based model checkers like JPF or MMC exploit the fact that a transition is
typically local: only a small part of the (current) state is changed by a transition. The model checker
SPIN does not exploit the locality of transitions. Why is that?

c. (4p) Consider a state space explorer, which is used to check for deadlocks. The state space explorer
uses a conventional hash table to store the states. However, each time when the hash table gets full,
the explorer randomly removes half of the states from the hash table. Does this approach always
terminate? If not, how can we ensure that the approach does terminate?

System Validation - Examination — 28 August 2008 4

Question 7 (15 points)

Apply runtime analysis (i.e. the Eraser algorithm as described by Visser et.al. 2002) to the Java program
below and explain the potential of a data race.

public class MyThreads {
public static void main(Stringil args) {
Value vl = new Value();
Value v2 = new Value(};
Task tl = new Task(vl, v2); tl.start();
Task t£2 = new Task(v2, vl); t2.start{);

}

class value {
private int x = 1;
public synchronized void add(vValue v) {
X = x + v.get{);
}
public int get () {
return x;
}
}

class Task extends Thread {
Value v1, v2;

public Task(Value vl, Value v2)} {
this.vl = v1;
this.v2 = v2;

}

public void run() {
vl._add(v2);
H

