Exam System Validation (214012) 8:45-12:15, 25-06-2010

e The exercises are worth a total of 90 points. The final grade is w%g’ts.

e The exam is open book: copies of slides/papers/notes/etc. are allowed.

Exercise 1 (15 points)

Suppose that you are working as a verification engineer at a small software company. The
company is working on a project to develop software for the storm surge barrier in the Nieuwe
Waterweg. The software consists of three components:

e the decision component that decides whether the barrier should be opened or closed
e the control component that controls the movements of the barrier doors
e the communication component that passes information between the different components.

The decision component has to make complex calculations. It has to function 100% correctly.
The barrier should always be closed when the weather conditions require this. However, the
barrier should not be closed unnecessarily. Because of the high amount of ship traffic on the
Nieuwe Waterweg, unnecessary closing can lead to millions of euros damage.

The control component may fail, but whenever it fails, it should be stopped and reset
immediately.

The communication component passes for example sensor information and weather forecasts
(provided as user input) on to the decision component, and it passes results from the decision
component on to the control component.

Your company should not only provide the software (written in Java), it should also provide
a formal argument why the software is safe to be used.

You are asked to give a recommendation how different formal methods and tools should be
used to provide this formal argument. The recommendation should be similar in length to the
question (200-250 words).

Answer

My approach: decision component statically verified (too complex state for model checking),
run-time checking for control component, so that it stops as soon as safety properties are violated
(errors may occur, but should lead to termination), behaviour of communication component
modelled as state machine, can be model checked.

Exercise 2 (10 points)

Write formal specifications for the following properties in an appropriate specification formalism
(2 points per item).

A Method doubleBetween takes a non-empty array arr of integers and two appropriate
indices ¢, j as input. All values in the closed interval [i, j| are doubled, all others remain
unchanged.

Answer

requires arr != null && O <= 1 && 1 < arr.length && O <= j && j < arr.length;
ensures (\forall int k; O <= k && k < arr.length;
arr(k] == (i <= k && k <= j 7 2 * \old(arr[k]) : \old(arr[k]);

B In an elevator system, whatever happens, the system can always reach a state where the
lift door can open.

Answer

AG EF door_open

C If a method changes the value of variable x, then it can only double it.

Answer

constraint x == \old(x) || x == 2 * \old(x);

D When the lift has arrived on floor 1, the door of the lift is open as long as the alarm does
not sound. The alarm has to sound at some point.

Answer

AG(1lift_on floorl = Al[door open U alarm sound))

E The method m terminates normally when the integer array arr is sorted, otherwise it
throws an exception IllegalParameterFormatException. This is the only exception that
can be thrown by the method.

Answer

requires true;
ensures (\forall int i, j; O <=1 && i < j && j < arr.length; arr[i] <= arr[jl);
signals_only IllegalParameterFormatException;
signals (IllegalParameterFormatException) (\exists int i; j;
0 <=1 & i < j && j < arr.length; arr[i] > arr[jl);

If one does not assume non-null as default, the precondition should be: requires arr !=
null;

Exercise 3 (15 points).

Below are several Java classes. Predict the behaviour of the JML run-time checker, when applied
to these classes. Argue why the predicted behaviour will occur. (3 points each, 1 for the correct
answer, 2 for the correct argument)

problem A.

(Also used for question 4A.)

1 class RtQuestionl {
2
3 //@Q invariant a != null;
4 //@Q constraint a.length = \old(a.length);
5 int [] a = new int [5];
6
7 /*Q requires x >= 0;
8 ensures \result = a[x];
9 signals (Exception) false;
10 * /
11 int lookup (int x) {
12 return a[x];
13 }
14 }
15 public class RtCheckingl {
16
17 public static void main(String [] args){
18 RtQuestionl r = new RtQuestionl ();
19 for (int i = 0; i < 4; i++) {
20 System.out.println (r.lookup (2x%i));
21 }
22 }
23
24 }
Answer

ExceptionalPostconditionError (thus no ArrayIndexOutOfBoundsException).

problem B.

1 class RtQuestion2 {

© 00 g O U W N

AR R R R W W W W W W W W W W N NN N DNDNDNDNDN R e e e
B W N R O © 00N OO0t R WN KRR O © 0N OO REWN R OO0 OO R WY RO

}

[BN, NS, TN, T O G N
PR~ O O oo O

54 }

boolean open;

//@ public final ghost int state0 = 0
//@ public final ghost int statel = 1
//@ public final ghost int state2 = 2;
//@ public final ghost int stated = 3
//@ public ghost int state = state0;

//@ constraint \old(state) = state0 ==> state =— statel
//@ constraint \old(state) =— statel =—> state =— statel
//@ constraint \old(state) = state2 ==> state = statel
void initDoor (boolean open) {
if (open) {
this.open = true;
//@Q set state = statel;
} else {
this.open = false;
//Q set state = state2;
}
}
/*@Q requires state = statel;
@ ensures state — state2;
+/
void closeDoor () {
open = false;
//Q set state = state2;
/*@Q requires state =— state2;
@ ensures state = statel;
*/
void openDoor () {
open = true;
}
/*@Q requires state — statel || state — state2;
ensures state = \old(state);
*
/

void doSomethingElse () {
System.out.println (” pomtiedom”);
}

public class RtChecking2 {

public static void main (String [] args) {
RtQuestion2 door = new RtQuestion2 ();
door.initDoor (true);
door . closeDoor ();
while (true) {
door.doSomethingElse ();
}

(Also used for question 4B.)

state?2;
state2;
state?2;

Answer
Prints “pomtiedom” forever - the violating trace is not executed.

problem C.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 }
30

class RtQuestion3d {

int arr [];
int count;

//@ invariant count >= 0 && count < arr.length;

RtQuestion3 (int initCount, int initSize){

arr = new int[initSize |;
count = initCount;
¥
void add(int elem) {
count—+-;
if (count = arr.length) {
resize (count);
¥
arr [count] = elem;

}

void resize (int count) {

int [] new_arr = new int [2 x count];
for (int i = 0; i < count; i++) {
new_arr[i] = arr[i];

}s

arr = new._arr;

31 public class RtChecking3 {

32
33
34
35
36
37
38
39
40
41 }

public static void main (String [] args) {
RtQuestion3 list = new RtQuestion3 (0,
list .add (2);
list .add (4);
list .add (
list .add (

2);

Answer

InvariantError when resize is called.

problem D.

class RtQuestiond {
//@Q ensures \result = axa — bxb;
int compute(int a, int b){
int resl = a + b;
int res2 = a — b;
return resl + res2;
¥
}
public class RtCheckingd {
public static void main (String [] args)
RtQuestiond ¢ = new RtQuestiond ();
c.compute (2, 0);
}
}
Answer

By coincidence, there are no problems here for this call.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

problem E.

class RtQuestion5 {

}

/*@Q spec_public %/ private int x

private int
private int

//@ constraint x > \old(x);

void
void
void
void
void
void
void
void
void

public class

addXtoX
addYtoX
addZtoX
addXtoY
addYtoY
addZtoY
addXtoZ
addYtoZ
addZtoZ

y = 45;
z = 88;

I
NN N MM K

e N e N N e N e N
— N N N e S e
et Yt Vet Vet Vet Wt Wt W s Wt

N N N <@ <@ X K ™
I

RtCheckingb {

public static void main (String

+++++++++
N <@ M N < W N < M

O i e e e e A VA

args) {

RtQuestion5 val = new RtQuestion5 ();

val .addXtoX ();
val.addYtoX ();
val .addZtoX ();
val.addZtoZ ();
val .addYtoY ();
}
}
Answer

ConstraintError, since the constraint is strict.

Exercise 4 (15 points).

Below are several (references to) Java classes. Predict the behaviour of ESC/Java, when applied
to these classes. Argue why the predicted behaviour will occur. (3 points each, 1 for the correct
answer, 2 for the correct argument)

problem A.

Class RtQuestionl from problem 3A, page 4.

Answer
Exceptional postcondition violated.

problem B.

Class RtQuestion?2 from problem 3B, page 5.

Answer
Precondition of closeDoor () possibly not enabled, because initDoor is not specified.
openDoor: postcondition possibly not establised.

10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

problem C.

public class StaticChecking3 {
//@Q public model int surface;
private int height;
private int width;
//@Q represents surface = height x width;
//@Q ensures surface =— h * w;
StaticChecking3 (int h, int w){
height = h;
width = w;
}
//@ ensures surface = \old(surface) * factor;
void enlarge(int factor){
height = height * factor;
width = width * factor;
}
//@ ensures surface =— \old(surface);
//@Q ensures height = \old (width) && width = \old (height);
void rotate () {
int temp = height;
height = width;
width = temp;
}
}
Answer

Postcondition of enlarge possibly not established.

11

problem D.
public class StaticCheckingd {
int [] arr;

/*@Q requires arr != null;
ensures (\forall int i; 0 <=1 && i1 < arr.length; arr[i] = \old(arr[i]x
*
/
void update() {
int i = 0;
//@ loop_invariant (\forall int j; 0 <= j && j < i; arr[j] = \old(arr[j]
//@ loop_invariant 0 <= i && 1 <= arr.length;
while (i < arr.length) {
arr[i] = arr[i] * i;
i++;
}
}
}

Answer
With loopsafe option: loop invariant possibly not established. Additional loop invariant needed
that everything between i and arr.length is not changed.

12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

problem E.
public class StaticCheckingb {
//@Q invariant 0 <= x && x < max;

/*@Q spec_public %/ private int x;
/*@Q spec_public *x/ private int y;
public static final int max = 24;

/*Q requires 0 <= a && a < max;
ensures X — a;
*/
StaticCheckingb (int a, int b){
X = a;
y = b;

}

/*@Q assignable x;
ensures x =— (\old(x) + \old(x))%max;
*/
void addXtoX() {
X = X + X;
x = x % max;

}

/*Q assignable x;
ensures x =— (\old(x) + y)%max;
*/
void addYtoX () {
X =X +V;
x = x % max;

}

Answer

Intended answer: no problem. Invariant broken inside method, but reestablished before end of
method. Unfortunately, while making the exercise, I overlooked that if x is negative, x % max
may be negative, so the invariant is broken nevertheless.

13

Exercise 5 (10 points)

Consider the model:
sibd}

T T
4 | A1)
I
For each of the following formula’s, is the formula true or false for the initial state s17
A G(e=(cUVD))
B AGEFAGd
C G(Fb)
D G((G(bV ¢)) = (GFD))
E AXE[b U (.

You only have to answer yes or no. For each correct answer: 42 points. For each incorrect
answer: —2 points. For each unanswered question, nothing changes. A negative total becomes
0.

Answer

A false: s — 83 — 84 — - -+
B true: from every state sy is reachable, where d holds forever on every path
C false: 81 — 83 — 84 — -+~

D true: the only path on which always b or ¢ is s — s3 — sg- -+, which contain infinitely
many b states

E true: in both sy and s3 a future exists in which b holds until c.

Exercise 6 (10 points)

An airlock is used to prevent too much warmth being lost from a building. (E.g. the entrance of
the Hogekamp building.) The control software has been modeled in SMV and uses the following
atomic propositions:

14

inner_open - The inner door is standing still in open position.
inner_closing - The inner door is moving towards the closed position.
inner_opening - The inner door is moving towards the open position.
inner_closed - The inner door is standing still in closed position.
inner_detect - A person is detected in the proximity of the inner door.

outer_open - The outer door is standing still in open position.
outer_closing - The outer door is moving towards the closed position.
outer_opening - The outer door is moving towards the open position.
outer_closed - The outer door is standing still in closed position.
outer_detect - A person is detected in the proximity of the outer door.
The manager, who has an MBA rather than a Computer Science degree, came up with the
following requirements:

(i) The doors shall not squash people by closing at the wrong time.
(ii) The doors are never open at the same time.

(iii) If someone waits in front of a door it will eventually open.

Write a set of LTL and CTL properties that verify that the model satisfies all these require-
ments.

Note that the definitions of the atomic properties and the requirements were written by
two different persons. This means that you will need to translate the intended meaning of the
requirements rather than what’s actually written.

Answer
With respect to (i), the dangerous possibility is a door closing when a person is detected. One
of the obvious translations is

LTLSPEC G (inner_detect -> !inner_closing)
LTLSPEC G (outer_detect -> !outer_closing)

However, the semantics do not say if detect and closing are from the same time period of if the
closing is the response to the sensor.

LTLSPEC G (inner_detect -> X !inner_closing)
LTLSPEC G (outer_detect -> X !outer_closing)

With respect to (ii), when the manager says open, he means open or closing or opening. Thus
a good translation is

LTLSPEC G (inner_closed | outer_closed)
The simple translation of (iii) is

LTLSPEC G (inner_detect -> F (!inner_detect | inner_open))
LTLSPEC G (outer_detect -> F (l!outer_detect | outer_open))

But the system has the same problem as the elevator: the other door might be blocked in the
open position by someone else. We can catch this by using a slightly larger set of formulas

LTLSPEC G (!inner_detect -> F (inner_detect | inner_closed))
LTLSPEC G (!outer_detect -> F (outer_detect | outer_closed))

15

meaning that if no one is detected the doors close plus

LTLSPEC G (inner_detect -> ((F (!inner_detect | inner_open))|(G !outer_closed))
LTLSPEC G (outer_detect -> ((F (!outer_detect | outer_open))|(G !inner_closed))

16

Exercise 7 (15 points)

This exercise presents three cases of model checking problems and ask for interpretation of the
counter-example output. Each case is worth 5 points.

problem A.

The eight queens puzzle is the problem of placing eight chess queens on an 8 x 8 chessboard such
that none of them are able to capture any other using the standard chess queen’s moves. The
queens must be placed in such a way that no two queens attack each other. Thus, a solution
requires that no two queens share the same row, column, or diagonal. The eight queens puzzle
is an instance of the more general n-queens problem of placing n queens on an n X n chessboard.

Someone has modeled the n-queens problem in SMV. The solution is based on putting one
queen in each column. The row of each queen is kept in the array board. The safety of each
queen (no other queen on same row,column or diagonal) is kept in the boolean array safe. The
transitions of the system model the fact that continuously one of the queens is chosen.

The next state of a board is determined by choosing one of the queens non-deterministically.
If she is is safe, she must stay where she is. Otherwise she can move to any row in her column.

When NuSMYV is run on the 7-queens problem, the output is

-- specification AG !((((((safe[1] & safe[2]) & safe[3]) & safe[4]) &
safe[5]) & safe[6]) & safel[7]) is false

-- as demonstrated by the following execution sequence

Trace Description: AG Only counterexample

Trace Type: Counterexample

-> State: 1.1 <-
board[1] =1
board[2] =1
board[3] = 1
board[4] = 1
board[5] = 1
board[6] = 1
board[7] =1
safe[1] =
safe[2] =
safe[3] =
safe[4] =
safe[5] =
safe[6] =
safel[7] =

-> Input: 1.
col =1

-> State: 1.2 <-
board[1] = 4

-> Input: 1.3 <-
col =1

-> State: 1.3 <-
board[2] = 6

-> Input: 1.4 <-
col = 4

-> State: 1.4 <-
board[4] = 3
safe[1] =1

-> Input: 1.5 <-

NO OO OO OO

<_

17

col = 4
-> State: 1.5 <-

board[5] = 5
safe[5] = 1

-> Input: 1.6 <-
col =2

-> State: 1.6 <-
board[6] = 7
safe[4] = 1
safe[6] = 1

-> Input: 1.7 <-
col =2

-> State: 1.7 <-
board[7] = 2
safe[2] = 1
safe[3] = 1
safe[7] = 1

(i) What (in plain English) is the meaning of the formula?

Answer

It never happens that all seven queens are safe.

(ii) The initial position is:

=N Wk Ot

WY WY W W
1 2 3 4 5 6 7

What are the positions of the queens on the board at the end of the counter-example
trace?

Answer

=N Wk OO
E

18

© 0 N O Ul W N

e e e
T W N = O

problem B.

Given a small randomized Java program.
import java.util.Random;
public class JPFrandom {

public static void main(String args|[]){
int N=Integer.parselnt (args[0])

Random random = new Random ();
int total=0;
int i=0;

while (i<N) {
total=(total + ixi) % N;
i+=random. nextInt (2)+41;

}

assert total >0;

The input for JPF was

target=JPFrandom
target_args=6
classpath=.

sourcepath=.
cg.enumerate_random=true

report.console.property_violation=error ,trace

The result was the trace below, apparently it is possible for the variable total to reach 0.
Explain how this happend by reconstructing the values of the variables i and total during

the run of the program from the trace.

gov.nasa. jpf.jvm.NoUncaughtExceptionsProperty
java.lang.AssertionError
at JPFrandom.main(JPFrandom. java:13)

error #1

gov.nasa. jpf.jvm.choice.ThreadChoiceFromSet {>main}

[2844 insn w/o sources]

trace #1
transition #0 thread:

JPFrandom. java:2 : public class JPFrandom {

[1 insn w/o sources]

JPFrandom. java:5 : int N=Integer.parselnt(args[0]);

JPFrandom. java:6 : Random random = new Random();
[2 insn w/o sources]

JPFrandom. java:6 : Random random = new Random();
[57 insn w/o sources]

JPFrandom. java:6 : Random random = new Random();

JPFrandom. java:7 : int total=0;

JPFrandom. java:8 : int i=0;

JPFrandom. java:9 : while(i<N) {

JPFrandom. java: 10 : total=(total + ixi) % N;

JPFrandom. java:11 : i+=random.nextInt(2)+1;

—— transition #1 thread:
gov.nasa. jpf.jvm.choice.IntIntervalGenerator[0..1,delta=+1,cur=0]

19

JPFrandom. java:
JPFrandom. java:
JPFrandom. java:
JPFrandom. java:

: i+=random.nextInt(2)+1;

: while(i<N) {

: total=(total + ix*i) % N;
i+=random.nextInt(2)+1;

—— transition #2 thread: O
.IntIntervalGenerator[0..1,delta=+1,cur=0]

gov.nasa. jpf.jvm.
JPFrandom. java:
JPFrandom. java:
JPFrandom. java:
JPFrandom. java:

choice
11

i+=random.nextInt (2)+1;
: while(i<N) {
: total=(total + i*i) % N;
i+=random.nextInt(2)+1;

—— transition #3 thread: O
.IntIntervalGenerator[0..1,delta=+1, cur=0]

gov.nasa. jpf.jvm.
JPFrandom. java:
JPFrandom. java:
JPFrandom. java:
JPFrandom. java:

choice
11

i+=random.nextInt (2)+1;
: while(i<N) {
: total=(total + ix*i) % N;
i+=random.nextInt(2)+1;

—— transition #4 thread: O
.IntIntervalGenerator[0..1,delta=+1, cur=0]

gov.nasa. jpf.jvm.
JPFrandom. java:
JPFrandom. java:
JPFrandom. java:
JPFrandom. java:

choice
11

i+=random.nextInt(2)+1;
: while(i<N) {
: total=(total + i*i) % N;
i+=random.nextInt (2)+1;

—— transition #5 thread: O
.IntIntervalGenerator[0..1,delta=+1,cur=1]

gov.nasa.jpf.jvm.
JPFrandom. java:
JPFrandom. java:
JPFrandom. java:
[13 insn w/o sources]

choice
11

9

13

i+=random.nextInt(2)+1;
: while(i<N) {
: assert total>0;

results

error #1: gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty "java.lang.AssertionError

at JPFrandom.main(JPFran...'

Answer
after transition
0
1
2
3
4
5

choice

o O O O

total

0

0

1

5

14 mod 6 = 2
18 mod 6 =0

20

problem C.

Given is a small two threaded Java program:

1 class IntVal{

2 private int val;

3 public IntVal(int val){this.val=val;}

4 public void set(int val){this.val=val;}
5 public int get(){return val;}

6 }

7 public class TwoThreads {

8 public static void main(String args]|[]){
9 final IntVal ival = new IntVal(0);

10 Thread t1 = new Thread (new Runnable (){
11 public void run(){

12 for (int 1=0;i<2;i++) {

13 ival.set (ival.get()+1);

14 }

15 }

16 1)

17 Thread t2 = new Thread (new Runnable (){
18 public void run(){

19 for (int i=0;i<2;i++) {

20 ival.set (ival.get()+1);

21 }

22 }

23 IF

24 tl.start ();

25 t2.start ();

26 try {

27 t1.join ();

28 t2.join ();

29 } catch (InterruptedException e) {}
30 assert ival.get()>2;

31}

32 }

When verified with JPF, the assertion (line 30) was triggered. Extract the scenario that

leads to the error from the JPF output below.

In the scenario threads take turns running for a while. When you describe the scenario, it
is important to know which thread is running and precisely what the first and/or last action of
the running thread during its turn is. (E.g. thread 37 starts by reading 7 from variable x and
stops just before reading variable y.) The description of what a thread does during its turn can

and should be much less detailed.

gov.nasa. jpf.jvm.NoUncaughtExceptionsProperty
java.lang.AssertionError
at TwoThreads.main(TwoThreads. java:30)

gov.nasa. jpf.jvm.choice.ThreadChoiceFromSet {>main}

[2844 insn w/o sources]

TwoThreads. java:7 : public class TwoThreads {

[1 insn w/o sources]

21

=== trace #1
transition #0 thread: O

TwoThreads. java:
TwoThreads. java:

[1 insn w/o

TwoThreads. java:
TwoThreads. java:
TwoThreads. java:

[1 insn w/o

TwoThreads. java:

9

3
sources]
3

9

10
sources]
10

[180 insn w/o sources]

TwoThreads
TwoThreads

.java:10
.java:17

[1 insn w/o sources]

TwoThreads

.java:17

[133 insn w/o sources]

TwoThreads
TwoThreads

gov.nasa. jpf
TwoThreads
TwoThreads

gov.nasa. jpf
TwoThreads
TwoThreads

gov.nasa. jpf
TwoThreads

.java:17
.java:24

.java:24
.java:25

.java:25
.java:27

.java:27

[6 insn w/o sources]

gov.nasa. jpf
TwoThreads
TwoThreads
TwoThreads

gov.nasa. jpf
TwoThreads
TwoThreads
TwoThreads

gov.nasa. jpf
TwoThreads
TwoThreads
TwoThreads
TwoThreads

gov.nasa. jpf
TwoThreads
TwoThreads
TwoThreads

gov.nasa. jpf
TwoThreads
TwoThreads
TwoThreads

.java:12
.java:13
.java:5

.java:b
.java:13
.java:4

.java:4
.java:12
.java:13
.java:5

.java:b
.java:13
.java:4

.java:19
.java:20
.java:5

: Thread t1

: Thread t1
: Thread t2

: Thread t2

: Thread t2
: tl.start();

new Thread(new

new Thread(new

new Thread(new
new Thread(new

new Thread(new

new Thread(new

ival.set(ival.get(O+1);

ival.set(ival.get(O+1);

ival.set(ival.get(O+1);

ival.set(ival.get()+1);

ival.set(ival.get()+1);

22

: final IntVal ival = new IntVal(0);
: public IntVal(int val){this.val=val;}

: public IntVal(int val){this.val=val;}
: final IntVal ival = new IntVal(0);
: Thread t1

Runnable () {

Runnable () {

Runnable () {
Runnable (){

Runnable(){

Runnable () {

transition #1 thread:
.jvm.choice.ThreadChoiceFromSet {>main,Thread-0}
: tl.start();

: t2.start();

—— transition #2 thread:
.jvm.choice.ThreadChoiceFromSet {>main,Thread-0,Thread-1}
: t2.start();
: tl.join(Q);
—— transition #3 thread:
.jvm.choice.ThreadChoiceFromSet {>main,Thread-0,Thread-1}

: tl.join();

transition #4 thread:
.jvm.choice.ThreadChoiceFromSet {>Thread-0,Thread-1}
: for(int i=0;i<2;i++) {

: public int get(){return val;}
transition #5 thread:
.jvm.choice.ThreadChoiceFromSet {>Thread-0,Thread-1}
: public int get(O{return val;}

: public void set(int val){this.val=val;}

transition #6 thread:
.jvm.choice.ThreadChoiceFromSet {>Thread-0,Thread-1}
: public void set(int val){this.val=val;}
: for(int i=0;i<2;i++) {

: public int get(){return val;}
transition #7 thread:
.jvm.choice.ThreadChoiceFromSet {>Thread-0,Thread-1}
: public int get(O{return val;}

: public void set(int val){this.val=val;}

transition #8 thread:
.jvm.choice.ThreadChoiceFromSet {Thread-0,>Thread-1}
: for(int i=0;i<2;i++) {

: public int get(){return val;}
transition #9 thread:

gov.nasa. jpf
TwoThreads
TwoThreads
TwoThreads

.java:b
.java:20
.java:4

.jvm.choice.ThreadChoiceFromSet {Thread-0,>Thread-1}

: public int get(){return val;}

: ival.set(ival.get()+1);

: public void set(int val){this.val=val;}

—— transition #10 thread: 2

gov.nasa. jpf
TwoThreads
TwoThreads
TwoThreads
TwoThreads

.java:4
.java:19
.java:20
.java:b

.jvm.choice.ThreadChoiceFromSet {Thread-0,>Thread-1}

: public void set(int val){this.val=val;}
: for(int i=0;i<2;i++) {

: ival.set(ival.get()+1);

: public int get(){return val;}

—— transition #11 thread: 2

gov.nasa. jpf
TwoThreads
TwoThreads
TwoThreads

.java:b
.java:20
.java:4

.jvm.choice.ThreadChoiceFromSet {Thread-0,>Thread-1}

: public int get(){return val;}

: ival.set(ival.get()+1);

: public void set(int val){this.val=val;}

—— transition #12 thread: 2

gov.nasa. jpf
TwoThreads
TwoThreads
TwoThreads

.java:4
.java:19
.java:22

.jvm.choice.ThreadChoiceFromSet {Thread-0,>Thread-1}
: public void set(int val){this.val=val;}
: for(int i=0;i<2;i++) {

—— transition #13 thread: 1

gov.nasa. jpf
TwoThreads
TwoThreads
TwoThreads

.java:4
.java:12
.java:15

.jvm.choice.ThreadChoiceFromSet {>Thread-0}
: public void set(int val){this.val=val;}
: for(int i=0;i<2;i++) {

—— transition #14 thread: O

gov.nasa. jpf

[6 insn w/o sources]

TwoThreads

.java:28

[4 insn w/o sources]

TwoThreads
TwoThreads
TwoThreads
TwoThreads

.java:29
.java:30
.java:5
.java:30
[13 insn w/o sources]

.jvm.choice.ThreadChoiceFromSet {>main}
: t2.join();

: } catch (InterruptedException e) {}
: assert ival.get()>2;

: public int get(){return val;}

: assert ival.get()>2;

results

error #1: gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty "java.lang.AssertionError

at TwoThreads.main(TwoTh..."

Answer

e During transitions 0,1,2,3: the main thread starts threads t1 and t2 and begins waiting
for thread t1.

The variable val contains 0.

e During transitions 4,5,6,7: thread t1 increases val from 0 to 1, reads 1 from val and begins
to write 2,

The variable val contains 1.

e During transitions 8,9,10,11,12: thread t2 increases val from 1 to 2 and from 2 to 3 then
terminates.

The variable val contains 3.

23

e During transition 13: thread t1 completes writing 2 and terminates.
The variable val contains 2.

e During transition 14: the main thread joins with t1 and t2 and the assertion is triggered.

24

