
EXAM
System Validation

(192140122)
13:45 - 17:15
04-11-2013

• This exam consists of 8 exercises.

• The exercises are worth a total of 100 points.

• The final grade for the course is (hw1+hw2)/2+exam/10
2 , provided that you obtain at least 50

points for the exam (otherwise, the final grade for the course is a 4).

• The exam is open book: all paper copies of slides, papers, notes etc. are allowed.

Exercise 1: Formal Tools and Techniques (10 points)

Consider an on-line shopping environment, consisting of several components such as:

• a payment component;

• a display results component that shows customers the items that correspond to their search
criteria;

• a suggestion component that shows customers the items that are probably of interest for the
customers, given their earlier searches and purchases; and

• an order component, taking care that once the payment is in, the item is shipped.

Recently, there have been several complaints from customers that they ordered some item, and
never received it. On various web forums, customers also complain about the strange results displayed
when they are searching for some particular item.

Within the company, the management has decided that serious damage control is needed, and
that the software needs to be analysed thoroughly and improved to avoid such problems happening
again in the future. The improvements in the system should be integrated as fast as possible.

You have recently been hired by the company as the software quality officer, and therefore
you are asked to make a plan that will ensure that the reputation of the company is not further
damaged. Your plan should provide a balance between effort, money and time needed, and the
potential reputation damage to the company.

Describe your plan in at most 200 words. You may assume that different formal validation tools
exist for the programming language that has been used for this system.

1

Exercise 2: Specification (12 points)

Write formal specifications for the following informal requirements in an appropriate specification
formalism of your choice (3 points per item). You may assume that appropriate atomic propositions,
query methods and classes exist.

a When you upload your assignment in Blackboard, it will be graded.

b Every weekend, the heating system is switched off, until the water temperature gets below 15
degrees.

c There always is a Dutch skater that holds a world record.

d The number of people in the room is never in- or decreased by more than 1.

2

Exercise 3: Conveyor Belt Modelling (18 points)

Consider a warehouse where items are loaded onto a truck, by means of a conveyor belt that runs
between the warehouse and the truck. The conveyor belt is not 100% reliable and items may fall off
the belt. If that happens an alarm must be raised and everything must stop until the item is placed
back onto the belt.

A number of events related to items are possible:

• The warehouse is restocked with items.
• An item leaves the warehouse on the belt.
• An item falls off the belt.
• An item is put back onto the belt.
• An item reaches the truck.
• A truck full of items leaves and is replaced by an empty one.

a (9 points) Write an SMV model of this system, that models the behaviour of the items and
the alarm:

• The items shall not be modeled as separate modules, but as a count of items in the
warehouse, on the belt, and in the waiting truck.

• In every step in the model, at most one item-related event can happen.

• The model shall include the behaviour of the alarm.

You may use abbreviations, e.g., if a long formula occurs several times you may mark the first
occurrence with a name and then use this name for subsequent occurrences of the formula.

In the answers to exercises b–d, you can use the variables containing the item counts and/or the
state of the alarm. Moreover, for every integer variable ending in count, such as truck count,
you may assume that a variable truck diff exists, which is 0 in the initial state and denotes the
difference between the current and previous count value in all later states. Assume that these have
been automatically defined for you as:

1 i n i t (t r u c k d i f f) : = 0 ;
2 n e x t (t r u c k d i f f):= n e x t (t r u c k c o u n t)− t r u c k c o u n t ;

Using auxiliary variables is permitted if you DEFINE them in terms of the allowed ones.

b (3 points) Specify that every truck is eventually fully loaded and leaves.

c (3 points) Specify that it is possible that a truck is loaded without any items falling of the
belt.

d (3 points) We wish to ensure that the model contains no runs in which items keep falling off
the belt and being put back, without any items ever reaching the truck. Add some information
to the model that ensures this.

3

Exercise 4: Software Model Checking (12 points)

Consider the following program

1 u n s i g n e d i n t r e d =1;
2 u n s i g n e d i n t y e l l o w =0;
3 u n s i g n e d i n t g r e e n =0;
4 u n s i g n e d i n t c o u n t e r =0;
5

6 #i n c l u d e ” update . c ”
7

8 i n t main (i n t argc , c h a r ∗ a r g v []) {
9 f o r (; ;) {

10 update () ;
11 a s s e r t (r e d+y e l l o w+g r e e n ==1);
12 s l e e p (1) ;
13 c o u n t e r=c o u n t e r +1;
14 }
15 }

This program has already been annotated to show that precisely one of the lights will be on after
an update.

a (4 points) Without knowing how the file update.c implements the update procedure, annotate
the main body to verify that this traffic light runs in a sequence:

red→ green→ yellow→ red→ · · ·

Note that update is not required to change the light on every call.
Hint: use an auxiliary variable to keep track of the color of the traffic light before the call to
update.

b (6 points) We will try to prove the given claim using the following two predicates:

P0 red+yellow+green==0

P1 red+yellow+green==1

Below is the abstraction of the main program over these two predicates:

boolean P0,P1=F,T;
for (;;){

update();
assert(P1); // assert(red+yellow+green==1);
P0,P1 := P0,P1; // sleep(1);
P0,P1 := P0,P1; // counter=counter+1;

}

Derive the boolean abstraction of the update function, given that it has the following imple-
mentation:

4

1 v o i d update (){
2 r e d =0;
3 y e l l o w =0;
4 g r e e n =0;
5 i f ((c o u n t e r %16) >= 1 && (c o u n t e r %16) < 4) {
6 g r e e n =1;
7 } e l s e i f ((c o u n t e r %16) >= 4 && (c o u n t e r %16) < 6) {
8 y e l l o w =1;
9 } e l s e {

10 r e d =1;
11 }
12 }

c (2 points) Why is the given abstraction not good enough to prove that the assertion in the
main program never fails?

5

Exercise 5: Abstraction (12 points)

Consider the interface Item representing an item kept in a BookStore database quoted on the next
page. The store keeps track of the type of the item for two purposes: (1) to calculate package and
postage costs for on-line shoppers, and (2) to maintain a certain minimal state of the item supply
for some types of items.

a (4 points) Annotate the Item class with class invariants and an abstract specification to
distinguish between paper-printed media and digital media. (Assume computer games are sold
as digital media).

b (4 points) Using the developed abstraction provide a concise specification for the getWeight()
method in the Item class, stating which items do have a weight and which items do not have
a weight.

c (4 points) Add appropriate specifications to the BookStore class to state that there are always
books and newspapers in stock. Provide two alternatives of this specification, one using the
getCount() method, and one not using it.

6

1 p u b l i c i n t e r f a c e Item {
2

3 p u b l i c f i n a l s t a t i c i n t BOOK = 1 ;
4 p u b l i c f i n a l s t a t i c i n t NEWSPAPER = 2 ;
5 p u b l i c f i n a l s t a t i c i n t MAGAZINE = 2 ;
6 p u b l i c f i n a l s t a t i c i n t BOARD GAME = 3 ;
7 p u b l i c f i n a l s t a t i c i n t DIGITAL BOOK = 4 ;
8 p u b l i c f i n a l s t a t i c i n t COMPUTER GAME = 5 ;
9 p u b l i c f i n a l s t a t i c i n t AUDIO BOOK = 6 ;

10

11 p u b l i c i n t getType () ;
12

13 p u b l i c i n t getWeight () ;
14 }

1 i m p o r t j a v a . u t i l . A r r a y L i s t ;
2 i m p o r t j a v a . u t i l . L i s t ;
3

4 p u b l i c c l a s s BookStore {
5

6 p r i v a t e L i s t <Item> s t o r e = new A r r a y L i s t <Item >() ;
7

8 p u b l i c i n t getCount (i n t t y p e) {
9 i n t count = 0 ;

10 f o r (I tem i : s t o r e) {
11 i f (i . getType () == t y p e) {
12 count++;
13 }
14 }
15 r e t u r n count ;
16 }
17

18 p u b l i c i n t s e l l (I tem item) {
19 s t o r e . remove (i tem) ;
20 r e t u r n i tem . getWeight () ;
21 }
22

23 p u b l i c v o i d n e w A r r i v a l (I tem item) {
24 s t o r e . add (i tem) ;
25 }
26 }

7

Exercise 6: Run-time Checking (12 points)

Explain your answers (without explanation no points will be awarded). If you think the specification
is violated, clearly indicate at what point in the execution, the problem will occur.

a (6 points) Consider class BinarySearchRecursive. What will happen when the JML run-
time checker is used to validate this class? (You can assume that RAC can correctly check
the validity of the quantifier in the postcondition).

1 p u b l i c c l a s s B i n a r y S e a r c h R e c u r s i v e {
2

3 //@ r e q u i r e s l > 0 && s >= 0 && s + l <= a . l e n g t h ;
4 //@ r e q u i e r s (\ f o r a l l i n t i ; 0< i && i <a . l e n g t h ; a [i −1] < a [i]) ;
5 /∗@ e n s u r e s \ r e s u l t <==>
6 @ (\ e x i s t s i n t i ; i >=0 && i < l ; a [s+i] == t) ; @∗/
7 p u b l i c s t a t i c b o o l e a n s e a r c h (i n t s , i n t l , i n t [] a , i n t t) {
8 i f (l == 1) r e t u r n (a [s] == t) ;
9 i n t m = s + l / 2 ;

10 i f (a [m] == t) r e t u r n t r u e ;
11 i f (a [m] > t) r e t u r n s e a r c h (s , l /2 , a , t) ;
12 r e t u r n s e a r c h (m, l /2 , a , t) ;
13 }
14

15 p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {
16 i n t [] a1 = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} ;
17 s e a r c h (0 , a1 . l e n g t h , a1 , 3) ;
18 s e a r c h (0 , a1 . l e n g t h , a1 , 0) ;
19 }
20 }

b (2 points) If you have found a problem in the previous point, change the main method to
reveal the problem. If you have not found any problems and you think there is none, argue
why.

c (4 points) Consider class TransactionRegister on the next page. What will happen when
the JML run-time checker is used to validate this class?

8

1 p u b l i c c l a s s T r a n s a c t i o n R e g i s t e r {
2

3 p r i v a t e /∗@ s p e c p u b l i c @∗/ s h o r t t r a n s a c t i o n C o u n t = 0 ;
4

5 //@ p u b l i c c o n s t r a i n t \ o l d (t r a n s a c t i o n C o u n t) <= t r a n s a c t i o n C o u n t ;
6 //@ p u b l i c i n v a r i a n t t r a n s a c t i o n C o u n t <= 100000;
7

8 /∗∗ R e g i s t e r s a t r a n s a c t i o n i f th e maximum number o f
9 t r a n s a c t i o n s has not y e t been r e a c h e d . ∗/

10 v o i d c o n f i r m T r a n s a c t i o n () {
11 i f (t r a n s a c t i o n C o u n t <= 100000) t r a n s a c t i o n C o u n t ++;
12 }
13

14 p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {
15 T r a n s a c t i o n R e g i s t e r t r s = new T r a n s a c t i o n R e g i s t e r () ;
16 f o r (i n t i =0; i < I n t e g e r . MAX VALUE ; i ++) {
17 t r s . c o n f i r m T r a n s a c t i o n () ;
18 }
19 }
20 }

9

Exercise 7: Static Checking (12 points)

Explain your answers (without explanation no points will be awarded).

a (4 points) Consider class Matrix. Provide a class invariant to specify that the matrix is square
in dimension, and a complete loop specification so that the postcondition of the method
resetDiagonal can be established.

1 p u b l i c c l a s s M a t r i x {
2

3 p r i v a t e /∗@ s p e c p u b l i c @∗/ i n t [] [] c o n t e n t s ;
4

5 p r i v a t e /∗@ s p e c p u b l i c @∗/ i n t s i z e ;
6 //@ p u b l i c i n v a r i a n t s i z e > 0 ;
7

8 //@ e n s u r e s (\ f o r a l l i n t i ; i >=0 && i <s i z e ; c o n t e n t s [i] [i]==0);
9 p u b l i c v o i d r e s e t D i a g o n a l () {

10 f o r (i n t i =0; i <s i z e ; i ++) {
11 c o n t e n t s [i] [i] = 0 ;
12 }
13 }
14 }

b (4 points) Consider class Rectangle on the next page. What will happen when Extended
Static Checker is used to validate this class?

c (4 points) Consider class PIN on the next page. What will happen when Extended Static
Checker is used to validate this class?

10

1 p u b l i c c l a s s R e c t a n g l e {
2 p r i v a t e /∗@ s p e c p u b l i c @∗/ i n t width ;
3 p r i v a t e /∗@ s p e c p u b l i c @∗/ i n t h e i g h t ;
4

5 //@ e n s u r e s width == \ o l d (width) ∗ f a c t o r ;
6 //@ a s s i g n a b l e t h i s . ∗ ;
7 p u b l i c v o i d s c a l e X (i n t f a c t o r) {
8 width = width ∗ f a c t o r ;
9 }

10

11 //@ e n s u r e s h e i g h t == \ o l d (h e i g h t) ∗ f a c t o r ;
12 //@ a s s i g n a b l e t h i s . ∗ ;
13 p u b l i c v o i d s c a l e Y (i n t f a c t o r) {
14 h e i g h t = h e i g h t ∗ f a c t o r ;
15 }
16

17 //@ e n s u r e s width == \ o l d (width) ∗ f a c t o r ;
18 //@ e n s u r e s h e i g h t == \ o l d (h e i g h t) ∗ f a c t o r ;
19 //@ a s s i g n a b l e t h i s . ∗ ;
20 p u b l i c v o i d s c a l e B o t h (i n t f a c t o r) {
21 s c a l e X (f a c t o r) ;
22 s c a l e Y (f a c t o r) ;
23 }
24 }

1 p u b l i c c l a s s PIN {
2 p r i v a t e /∗@ s p e c p u b l i c @∗/ i n t p in , t r y C o u n t e r ;
3 //@ p u b l i c i n v a r i a n t t r y C o u n t e r >= 0 && t r y C o u n t e r <= 3 ;
4 p r i v a t e /∗@ s p e c p u b l i c @∗/ b o o l e a n a c c e s s ;
5

6 //@ r e q u i r e s p i n == t h i s . p i n ;
7 //@ e n s u r e s \ r e s u l t ==> t h i s . t r y C o u n t e r == 3 ;
8 p u b l i c b o o l e a n checkPin (i n t p i n) {
9 b o o l e a n r e s u l t = f a l s e ;

10 i f (p i n == t h i s . p i n && t r y C o u n t e r > 0) {
11 r e s u l t = t r u e ;
12 r e s e t C o u n t e r () ;
13 } e l s e i f (t r y C o u n t e r > 0) t r y C o u n t e r −−;
14 t h i s . a c c e s s = r e s u l t ;
15 r e t u r n r e s u l t ;
16 }
17

18 //@ r e q u i r e s a c c e s s ;
19 //@ e n s u r e s t r y C o u n t e r == 3 ;
20 //@ a s s i g n a b l e t r y C o u n t e r ;
21 p u b l i c v o i d r e s e t C o u n t e r () {
22 i f (a c c e s s) t r y C o u n t e r = 3 ;
23 }
24 }

11

Exercise 8: Test Generation with JML (12 points)

Consider an upgraded version of the SensorValue class from the second homework assignment,
with the code on the next page. This implementation has been upgraded to better deal with failing
sensors. Instead of providing a fixed fail-safe value it provides a mean value of the last three correct
readouts, while the fail-safe value is used when there were no three correct readouts yet. Additionally,
it records and reports the type of failure (below minimum value, or above maximum value) and based
on the number of failures sets the permanent flag to indicate that the failure is considered serious.
You can disregard any overflow issues during the addition of integers.

a (6 points) Provide a JML contract specification for the method readSensor() that is going
to produce enough meaningful tests to thoroughly test this method. This is an operation
of a safety critical application, so every part of the state of the sensor counts. If you think
that some part of this specification can be better stated as a class invariant, provide the class
invariant instead.

b (3 points) Give an argument, as short as you can think of, why you have provided enough
specification cases for this method.

c (3 points) When generating tests with JMLUnitNG one has to provide test data. With respect
to providing this test data, try to describe what would you consider the most crucial factor to
consider for this particular test generation scenario.

12

1 p u b l i c c l a s s S e n s o r V a l u e {
2

3 p u b l i c s t a t i c f i n a l i n t STATUS OK = 0 ,
4 STATUS ERR MIN = 1 ,
5 STATUS ERR MAX = 2 ;
6

7 p r i v a t e i n t v a l u e ;
8 p r i v a t e f i n a l i n t f a i l S a f e , minValue , maxValue ;
9 p r i v a t e i n t [] v a l u e H i s t o r y = new i n t [3] ;

10 p r i v a t e i n t c o r r e c t R e a d o u t s = 0 , f a i l e d R e a d o u t s = 0 ;
11 p r i v a t e b o o l e a n permanent = f a l s e ;
12

13 S e n s o r V a l u e (i n t f a i l S a f e , i n t minValue , i n t maxValue) {
14 t h i s . f a i l S a f e = f a i l S a f e ;
15 t h i s . minValue = minValue ;
16 t h i s . maxValue = maxValue ;
17 t h i s . v a l u e = f a i l S a f e ;
18 }
19

20 /∗∗ R e g i s t e r th e newly r e a d v a l u e , check f o r e r r o r s and r e p o r t . ∗/
21 p u b l i c i n t r e a d S e n s o r (i n t newValue) {
22 i f (newValue < t h i s . minValue | | newValue > t h i s . maxValue) {
23 f a i l e d R e a d o u t s ++;
24 t h i s . permanent = (t h i s . f a i l e d R e a d o u t s >= 1 0) ;
25 i f (c o r r e c t R e a d o u t s >= 3) {
26 t h i s . v a l u e = (t h i s . v a l u e H i s t o r y [0] +
27 t h i s . v a l u e H i s t o r y [1] +
28 t h i s . v a l u e H i s t o r y [2]) / 3 ;
29 } e l s e {
30 t h i s . v a l u e = t h i s . f a i l S a f e ;
31 }
32 i f (newValue < t h i s . minValue) {
33 r e t u r n STATUS ERR MIN ;
34 } e l s e {
35 r e t u r n STATUS ERR MAX ;
36 }
37 } e l s e {
38 t h i s . v a l u e = newValue ;
39 c o r r e c t R e a d o u t s ++;
40 t h i s . v a l u e H i s t o r y [2] = t h i s . v a l u e H i s t o r y [1] ;
41 t h i s . v a l u e H i s t o r y [1] = t h i s . v a l u e H i s t o r y [0] ;
42 t h i s . v a l u e H i s t o r y [0] = newValue ;
43 r e t u r n STATUS OK ;
44 }
45 }
46 }

13

