Exam in Principles of Model Checking

Course number 192114100
Prof. Dr. Joost-Pieter Katoen
November 1, 2016, 08:45 – 11:15

Family name:	he skyrithm from the lecture to construct the GNRA G, such
First name:	You can give the transitions in a list or tabular form.
Student number:	

Please note the following hints:

- $\bullet\,$ Keep your student id card ready.
- The only allowed materials are
 - a copy of the book,
 - a copy of the lecture slides.
 - a dictionary.

Other materials (e.g., exercises, solutions, handwritten notes) are not admitted.

- Write your name and student number on every sheet.
- Write with blue or black ink; do not use a pencil.
- Any attempt at deception leads to failure for this exam, even if it is detected only later.
- The editing time is 150 minutes.

Question	Possible	Received
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	
Grade		

Name:	
Name:	
i dillo.	

Student no.:	

(10 points)

2

Let $\varphi = (\diamondsuit a) \cup b$ and $AP = \{a, b\}$. Questions:

- (a) Give the elementary sets for φ . Hint: There are 8 sets.
- (b) Use the algorithm from the lecture to construct the GNBA \mathcal{G}_{φ} such that $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = Words(\varphi)$. Hint: You can give the transitions in a list or tabular form.

	1

Name:	Student no.:	3

(10 points)

Consider the TS depicted above with the fairness assumption fair = $\Phi_1 \wedge \Phi_2$ where

$$\Phi_1 = \Box \Diamond (b \to \forall \bigcirc b)$$

$$\Phi_2 = \Box \Diamond a \to \Box \Diamond b$$

 $\it Hint:$ In the following, you may give the results of standard-CTL model checking queries directly. $\it Questions:$

- (a) Give $Sat_{fair}(\exists \Box \text{ true})$.
- (b) Decide whether

$$TS \models_{\text{fair}} \exists \bigcirc ((\exists \Box b) \land (\neg \forall \Box \neg a))$$

using the model-checking algorithm for CTL with fairness from the lecture. Provide all satisfaction sets you compute. Also provide intermediate results for any SCCs you consider during the computation.

(10 points)

4

Let $TS = (S, Act, \rightarrow, s_0, AP, L)$ be a a (possibly infinitely branching) transition system with no terminal states. The *computation tree* of TS is the transition system $CT(TS) = (S^+, Act, \rightarrow_{CT}, s_0, AP, L_{CT})$ where

$$\langle s_0 s_1 \dots s_n \rangle \xrightarrow{\alpha} \operatorname{CT} \langle s_0 s_1 \dots s_n s_{n+1} \rangle$$
 if and only if $s_n \xrightarrow{\alpha} s_{n+1}$ and $L_{\operatorname{CT}}(s_0 s_1 \dots s_n) = L(s_n)$.

Figure 1a shows an example transition system and Figure 1b its computation tree,

(c) A prefix of CT(TS)

Figure 1

Let \mathbb{T} denote the set of all computation trees and let Φ be a CTL state-formula. Then $TS \models \Phi$ if and only if $CT(TS) \models \Phi$. Hence, Φ defines a set of computation trees as follows

$$\mathcal{L}(\Phi) = \{ \operatorname{CT}(TS) \in \mathbb{T} \mid TS \text{ is a transition system and } \operatorname{CT}(TS) \models \Phi \}$$

A prefix of CT(TS) is the restriction of CT(TS) to a finite set of states $S_{\text{fin}} \subseteq S^+$ with

$$S_{\text{fin}} \neq \emptyset$$
 and $s_0 s_1 \dots s_n \in S_{\text{fin}}$ implies $s_0 s_1 \dots s_{n-1} \in S_{\text{fin}}$

Figure 1c shows one (of the infinitely many) prefix(es) of the computation tree in Figure 1b. Let pref(t) denote the set of prefixes of a computation tree t. For a set of computation trees T, we let $pref(T) = \bigcup_{t \in T} pref(t)$ and define the *closure* of T by $tcl(T) = \{t \in T \mid pref(t) \subseteq pref(T)\}$. Then, by definition

- (i) T is a (branching-time) safety property if and only if tcl(T) = T, and
- (ii) T is a (branching-time) liveness property if and only if $tcl(T) = \mathbb{T}$

Questions:

- (a) Prove that for all CTL formulas Φ for which $\mathcal{L}(\Phi)$ is both a safety and a liveness property, $\Phi \equiv true$.
- (b) Prove that for the CTL formula $\Phi = \forall \Diamond a, \mathcal{L}(\Phi)$ is a liveness property.
- (c) Prove that for the CTL formula $\Phi' = \exists \Box a, \mathcal{L}(\Phi')$ is **not** a safety property.

Name:	
-------	--

Student no.:

Question 4

(10 points)

Let the two transition systems TS_1 and TS_2 be given as follows.

Questions:

- (a) Determine TS_1/\sim and provide the relation \sim .
- (b) Prove or disprove $TS_1 \sim TS_2$.
- (c) Consider the LTL formula

$$\varphi = \Box \diamondsuit (a \wedge b) \ \to \ \diamondsuit \Box (a \vee \neg b).$$

State whether $TS_1 \models \varphi$ and whether $TS_2 \models \varphi$. Briefly explain your answers.

(10 points)

6

Consider the transition system depicted below:

Questions:

- (a) Determine the dependency relation between actions.
- (b) Determine which actions are stutter actions.
- (c) Show that the following ample-set suggestion is incorrect: $ample(s_1) = \{\beta\}$, $ample(s_3) = \{\beta\}$, $ample(s_4) = \{\gamma\}$, $ample(s_5) = \{\alpha, \delta\}$, $ample(s_6) = \{\alpha\}$, $ample(s_8) = \{\beta\}$ and for the remaining states s_2 and s_7 the ample-set is empty.
- (d) Provide the minimal ample sets that are correct.