Exam in Principles of Model Checking

Course number 192114100 Prof. Dr. Joost-Pieter Katoen January 24, 2017, 08:45 – 11:15

Family name:	he complement of a liveness property is a sainty property
First name:	he complement of a liveness property is again a liveness property.
Student number:	

Please note the following hints:

- Keep your student id card ready.
- The only allowed materials are
 - a copy of the book,
 - a copy of the lecture slides.
 - a dictionary.

Other materials (e.g., exercises, solutions, handwritten notes) are not admitted.

- Write your name and student number on every sheet.
- Write with blue or black ink; do not use a pencil.
- Any attempt at deception leads to failure for this exam, even if it is detected only later.
- The editing time is 150 minutes.

Question	Possible	Received
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	
Grade		

Name:			Studen	nt no.:	
Question 1 Prove or disprove the follow	wing statemer	M do zal			(10 point
(a) The complement of a				,	
(b) The complement of a					
(c) The complement of a					
(d) The complement of a	nveness prop	erty is agai	n a liveness p	oroperty.	

Name:	Student no.:	Student no.:	

Question 2

(10 points)

3

- (a) Prove or disprove that the following two LTL formula are equivalent: \Diamond \bigcirc $a \equiv \bigcirc \Diamond a$.
- (b) Show there is **no** equivalent LTL formula for the CTL formula $\forall \diamond \forall \bigcirc a$.
- (c) Assume we know that $\forall \bigcirc \forall \Diamond a \equiv \bigcirc \Diamond a$ which means that for all transition systems TS:

$$TS \models_{CTL} \forall \bigcirc \ \forall \Diamond \ a \iff TS \models_{LTL} \bigcirc \Diamond \ a \ .$$

Based on this assumption and the results above argue whether the two CTL formulas $\forall \Diamond \forall \bigcirc a$ and $\forall \bigcirc \forall \Diamond a$ are equivalent.

Name:	Student no.:

Question 3

(10 points)

Let $\psi = a \, W \, b$ and $AP = \{a, b\}$.

(a) Transform ψ into an equivalent basic LTL-formula. The basic LTL syntax is given by the following context free grammar:

$$\varphi ::= \mathsf{true} \ | \ a \ | \ \varphi_1 \wedge \varphi_2 \ | \ \neg \varphi \ | \ \bigcirc \ \varphi \ | \ \varphi_1 \ \mathsf{U} \ \varphi_2$$

- (b) Compute all elementary sets with respect to $closure(\psi)$ Hint: There are 8 elementary sets.
- (c) Use the algorithm from the lecture to construct the GNBA \mathcal{G}_{ψ} with $\mathcal{L}_{\omega}(\mathcal{G}_{\psi}) = Words(\psi)$. Therefore
 - define its set of initial states and its acceptance component.
 - for each elementary set B, define $\delta(B, B \cap AP)$ Hint: A transition table suffices, you do not have to draw the automaton.

Name:	

Student no.:

Question 4

(10 points)

5

Compute $Sat_{sfair}(\Phi)$ for the CTL state-formula Φ and the strong CTL fairness assumption sfair:

$$\Phi = \exists \Box \, \forall \Box \, \neg a$$

$$sfair = \Box \, \Diamond \, a \, \rightarrow \, \Box \, \Diamond \, \exists (\neg a) \, \mathsf{U} \, (\forall \bigcirc \, b)$$

where TS over $AP = \{a, b\}$ is given by:

Therefore

- (a) Determine $Sat(\exists(\neg a) \ \mathsf{U}\ (\forall \bigcirc\ b))$ (without fairness).
- (b) Determine $Sat_{sfair}(\exists \Box$ true). Elaborate the steps of the procedure.
- (c) Determine $Sat_{sfair}(\Phi)$. Elaborate the steps of the procedure.

Question 5

(10 points)

Consider the three transition systems over $AP = \{a, b\}$: TS_1 :

- (a) Decide whether $TS_1 \sim TS_2$. In case the systems are bisimiliar provide a bisimulation relation, otherwise give a distinguishing CTL formula.
- (b) Decide whether $TS_1 \sim TS_3$. In case the systems are bisimiliar provide a bisimulation relation, otherwise give a distinguishing CTL formula.
- (c) Based on your answers to questions a) and b), give an argument whether $TS_2 \sim TS_3$.