Test Pearl 100 — Intelligent Interaction

October 2 2015

The test consists of 5 questions. The grade is the number of achieved points divided 100.

1 (20 points) A bag H_1 contains 10 marbles: 2 red, 3 white and 5 blue. Bag H_2 contains also 10 marbles: 4 red, 2 white and 4 blue. Someone throws a fair dice and if the outcome is divisible by 3 then he chooses bag H_1 , else he chooses bag H_2 . After choosing a bag he draws 5 marbles with replacement. The outcome D is 2 red, 2 white and 1 blue marble, so $D = \langle 2, 2, 1 \rangle$.

- (a) Compute $P(D|H_1)$.
- (b) What is the most likely bag from which the marbles are drawn; H_1 or H_2 ? Motivate your answer by a computation using Bayes law.

Antwoord op 1.

- 1. $P(D|H_1) = \frac{5!}{2!1!2!} (\frac{2}{10})^2 (\frac{3}{10})^2 (\frac{5}{10}) = 0.054$
- 2. $P(D|H_2) = \frac{5!}{2!1!2!} (\frac{4}{10})^2 (\frac{2}{10})^2 (\frac{4}{10}) = 0.0768$. And $P(H_1|D)/P(H_2|D)$ equals $[(\frac{3}{10})^2 (\frac{5}{10})(\frac{1}{3})]/[(\frac{4}{10})^2 (\frac{4}{10})(\frac{2}{3})] = 45/128 = 0.35$. Hence H_2 is the most likely bag.

2 (20 points) Given the following piece of text from an email:

attention if you are in debt. if you are then we can help. qualifying is now at your fingertips and there are no long distance calls

- (a) Assume that we use as vocabulary $V = \{$ attention, adult, debt, publications, qualifying, xxx $\}$. How would this piece of text be coded using a binary coding and this vocabulary V?
- (b) For convenience consider a smaller vocabulary $V = \{\text{attention, adult, debt}\}$ and assume that we have a dataset consisting of 100 emails of which 30 are spam and with the following vocabulary frequency list:

Word	Ham	Spam
attention	30	10
adult	0	22
debt	4	20

This means for instance that the word "attention" occurs in 30 ham emails and in 10 spam emails. Assume that a new email arrives with binary coding < 1,0,1 >. Compute the likelihood that this email is from the spam class. in other words compute P(< 1,0,1 > |Spam|).

(c) How is this new email with coding < 1,0,1 > classified; *Ham* or *Spam*, if one uses a Naive Bayes approach with no smoothing?

Antwoord op 2.

- 1. < 1, 0, 1, 0, 1, 0 >
- 2. $P(<1,0,1>|Spam) = \frac{10}{30} \frac{8}{30} \frac{20}{30} = \frac{16}{270} = 0.0593$
- 3. $P(<1,0,1>|Ham)=\frac{12}{490}=0.0245$.
- 4. It is easily computed that $P(<1,0,1>|Ham)\frac{7}{10}/P(<1,0,1>|Spam)\frac{3}{10}=0.964<1$. Hence email is classified as Spam.
- 3 (20 points) Consider a dataset with attributes (features) A and B, attribute A can have values a_1 or a_2 and attribute B can have values b_1 and b_2 . The class label is given by P (from positive) or N (from negative).

Ex.	A	В	Class
1	a_1	b_2	P
2	a_1	b_1	P
3	a_1	b_1	P
4	a_1	b_2	P
5	a_1	b_1	P
6	a_2	b_2	N
7	a_2	b_2	N
8	a_2	b_2	N
9	a_1	b_1	N
10	a_1	b_2	N

A data analyst wants to construct a decision tree from this data set using information gain.

- (a) What is the information gain of attribute A?
 - A table with values for $-p \log_2(p)$ can be found at the end of this test.
- (b) What is the information gain of attribute B? A table with values for $-p \log_2(p)$ can be found at the end of this test.
- (c) Which attribute will be at the root (top) of the decision tree? Explain your answer.
- (d) Construct the complete decision tree.

Antwoord op 3.

- 1. Initial entropy is 1. For $A=a_1$ we have 5P and 2N, for $A=a_2$ we have 3N. Hence entropy for $A=a_2$ is 0 and the average entropy after splitting on A is $\frac{7}{10}[-\frac{5}{7}\log_2(\frac{5}{7})-\frac{2}{7}\log_2(\frac{2}{7})]=\frac{7}{10}*0.86=0.602$. Hence information gain is 0.398
- 2. Average entropy after splitting on attribute *B* is $\frac{4}{10}[-\frac{3}{4}\log_2(-\frac{3}{4}) -\frac{1}{4}\log_2(-\frac{1}{4})] + \frac{6}{10}[-\frac{2}{6}\log_2(\frac{2}{6}) \frac{4}{6}\log_2(\frac{4}{6})]$ which equals 0.4[0.31 + 0.50] + 0.6[0.53 + 0.39] = 0.876 So the gain is 0.124.
- 3. Attribute *A* will be the top node of the DT.

4 (20 points) A certain classifier was tested on a test, resulting in the following confusion matrix:

		Predicted class		
		C_1	C_2	C_3
Actual	C_1	120	15	20
Class	C_2	16	150	10
	C_3	22	3	130

- (a) What is the accuracy of this classifier?
- (b) What is the recall of this classifier for class C_2 ?
- (c) What is the precision of this classifier for class C_3 ?

Antwoord op 4.

- 1. Accuracy: [120+150+130]/[120+150+130+15+20+10+16+22+3] = 0.82
- 2. Recall C_2 : 150/[16+150+10] = 0.85
- 3. Precision C_3 : 130/[130+10+20] = 0.81

5 (20 points) Consider the training a linear classifier. Assume that the current linear classifier is given by the line $3 - 2x_1 + 2x_2 = 0$. The next feature point in our training set is given by x = (-2, 2).

- (a) How will the feature point x be classified, given the current weights w = (3, -2, 2) of the linear classifier, 0 or 1?
- (b) Assume that the feature point x is misclassified How will the weights w = (3, -2, 2) of the linear classifier be adapted. Assume a learning rate α of 0.3.

(c) How will x be classified after the above adaptation of the weight vectors w? Is this adaptation a step in the right direction? **Motivate your answer!**

Antwoord op 5.

- 1. 3+2*2+2*2=11 hence point is classified as 1.
- 2. Adaptation: (3, -2, 2) 0.3 * (1, -2, 2) = (2.7, -1.4, 1.4)
- 3. 2.7 + 1.4 * 2 + 1.4 * 2 = 8.3 Point is till not classified correct but 8.3 < 11 hence it is a step in the right direction.

Table for $-p \log_2(p)$

p	$-p\log_2(p)$	p	$-p\log_2(p)$
0	0	1/6	0.43
1	0	2/6	0.53
1/2	0.50	3/6	0.50
1/3	0.53	4/6	0.39
2/3	0.39	5/6	0.22
1/4	0.50	1/7	0.40
2/4	0.50	2/7	0.51
3/4	0.31	3/7	0.52
1/5	0.46	4/7	0.46
2/5	0.53	5/7	0.35
3/5	0.44	6/7	0.19
4/5	0.26		