Pearls of Computer Science - Pearl 100 - 2021-22-Practice exam - 2

Course: B-CS-MOD01-1A-202001022 B-CS Pearls of Computer Science Core 202001022

Contents:	Pages:	
A. Front page	1	
B Questions	7	

Generated on: Aug 26, 2021

Pearls of Computer Science - Pearl 100 - 2021-22-Practice exam - 2

Course: B-CS Pearls of Computer Science Core 202001022

This is a practice exam. Please use it to learn for the real exam.

- You may use 1 A4 sheet (both sides) with your own notes for this practice exam, as well as the calculator as provided in the digital exam (Remindo).
- Your own calculators, laptops, mobile phones, books etc. are not allowed.
- In order to simulate the real exam, it is recommended that you try to finish this practice exam within 60 minutes.

Number of questions: 4

1 Please select the correct answer (among four choices) for each subquestion. There is only **one correct answer per subquestion**.

IMPORTANT:

- 1. For each correct answer you get 2 points.
- 2. Don't just guess; for each wrong answer, you get 1 point deducted for the question as a whole!
- 3. The minimum number of points in this question is 0 points; you cannot get negative points for the question as a whole.
- 2 pt. a. (a) Let LLMIRAWJRRHPPWGOS be a ciphertext produced by the Vigenère cipher using a key of length 5. Which of the following messages has the highest probability of being the underlying plaintext?
 - a. ZEROISONEMINUSONE
 - **b.** FIVEISFOURPLUSONE
 - C. THREEISONEPLUSTWO
 - **d.** FIVEISANODDNUMBER
- 2 pt. **b.** (b) Suppose that Alice encrypts the plaintext 11 01 11 using the One-Time-Pad. Assuming you don't know which key Alice used in the encryption, which of the following statements is correct?
 - **a.** The probability that 11 11 11 is the resulting ciphertext is 16.6667%.
 - **b.** The probability that 00 11 11 is the resulting ciphertext is 3.1250%.
 - **c.** The probability that 11 01 11 is the resulting ciphertext is 1.5625%.
 - **d.** The probability that 00 00 00 is the resulting ciphertext is 0%.
- 2 pt. **c.** (c) Which of the following statements about the different block cipher modes of operation is correct?
 - **a.** In the CBC mode, a transmission error in a single ciphertext block will affect the decryption of the block itself and *all* succeeding blocks.
 - **b.** In the CBC mode, a transmission error in a single ciphertext block will *only* affect the decryption of the immediately succeeding next block.
 - **c.** In the OFB mode, a transmission error in a single ciphertext block will *only* affect the decryption of the immediately succeeding next block.
 - **d.** In the OFB mode, a transmission error in a single ciphertext block will *only* affect the decryption of the block itself.

- 2 pt. d. (d) Which of the following statements is correct?
 - **a.** Encrypting the message TWENTE using the Vigenère cipher with the key CAESAR results in the same ciphertext as when encrypting this message using the CAESAR cipher.
 - **b.** In the ECB mode, the same plaintext blocks are encrypted into the exact same ciphertext blocks.
 - **c.** The Feistel cipher is a block cipher which encrypts plaintexts into ciphertexts whose lengths are strictly smaller than those of the underlying plaintexts.
 - **d.** In the One-Time-Pad, it is required that the length of the used secret key is strictly less than the length of the to-be-encrypted plaintext message.
- 2 pt. (e) Let p=37 and q=53 be primes, and N=pq=1961. What is the result of the computation: $3^{1872}+3921 \mod 1961$?
 - **a.** 0
 - **b.** 1
 - **c.** 2
 - **d.** 3

- The following questions can have more than one correct answer. To get full points, you need to select all correct answers. You get points deducted for each selected wrong answer.
- ² pt. a. (a) Select *all* elements from the following list that are contained in \mathbb{Z}_8^* .
 - **a.** 0
 - **b.** 1
 - **c.** 2
 - **d**. 3
 - e. 4
 - **f**. 5
 - **g**. 6
 - h. 7
- 4 pt. **b.** (b) Which of the following numbers are valid, but too small to be secure, RSA moduli (i.e., generated as described in the lecture)?
 - a. ´
 - **b.** 1961
 - **c.** 37
 - **d.** 319
 - **e.** 2048

4 pt. c. (c) Let (N,e)=(41449,11) be an RSA public key. Which of the following statements are correct?

(*Note:* N is not small, so do *NOT* try to factor it! Moreover, you don't have to compute the RSA secret key d in this question.)

- a. $\sigma=41448~$ is a valid RSA signature~ for the given public key (N,e) and it signs the message m=1 .
- b. c=39401~ is a valid RSA encryption under the given public key (N,e) and it encrypts the plaintext message m=41447~.
- c. $\sigma=3$ is a valid RSA signature for the given public key (N,e) and it signs the message m=11351 .
- **d.** c=177146 is a valid RSA *encryption* under the given public key (N,e) and it encrypts the plaintext message m=3 .
- e. c=0 is a valid RSA *encryption* under the given public key (N,e) and it encrypts the plaintext message m=0 .

3 Consider the following plaintext message (a 5-bit string):

10001

Use the table below to *encrypt* this message in the **OFB**-mode by using the following 3-bit block cipher:

 $\mathsf{E}_k(b_2b_1b_0) = b_2b_1b_0 \oplus k$

with the bit-string k = 0.11 as secret key (note that $b_2b_1b_0$ denotes an arbitrary 3-bit plaintext message) and "shift"-parameter r = 2. As initialization vector for the OFB-mode, use the bit-string IV = 0.01.

If desirable, you can use the "(optional)"-cells for intermediate results (they won't give you any points though).

Block nr. j	Plaintext block <i>m_j</i>	a(0 pt.) (optional - no points)	b. (0 pt.) (optional - no points)	Ciphertext block <i>c_j</i>
j = 1	c. (0 pt.) (fill in)	d. (0 pt.) (optional - no points)	e(0 pt.) (optional - no points)	f(2 pt.) (fill in)
j = 2	g. (0 pt.) (fill in)	h(0 pt.) (optional - no points)	i(0 pt.) (optional - no points)	j(2 pt.) (fill in)
j = 3	k. (0 pt.)	(optional - no points)	m(0 pt.) (optional - no points)	n. (2 pt.) (fill in)

NOTE: Make sure that you only type in (sequences of) 0's and 1's! Any other format will be ignored and regarded as a wrong answer.

- Let p = 53, q = 71, and N = pq = 3763. Assume that we use (N, e) = (3763, 11) as the public key in the RSA encryption scheme.
 - (a) What is Euler's totient function φ evaluated on N?

$$\varphi(N) = a.$$
(2 pt.)

2 pt. **b.** (b) Which of the following equations can be used to deduce a value x such that $e\cdot x \mod \varphi(N)=1$?

NOTE: Don't just guess; you get 1 point deducted for selecting the wrong answer!

a.
$$1 = 3763 \cdot 1 - 11 \cdot 342$$

b.
$$1 = 3763 \cdot 947 - 3640 \cdot 979$$

c.
$$3 = 10920 \cdot (-1) + 33 \cdot 331$$

d.
$$3 = 53 \cdot (-12) + 71 \cdot 9$$

(c) What is the RSA secret key $d \ge 0$ that corresponds to the public key (N, e) = (3763, 11)?

This is the end of the practice exam.

Feel free to do the practice exam again in order to prepare yourself for the real exam.