Test of Pearl 000 — Binary logic and computer architecture

Pearls of Computer Science (201700139)
Bachelor module 1.1, Technical Computer Science, EWI
September 7, 2018, 13:45–14:45

Module coordinator: Doina Bucur Instructor: Pieter-Tjerk de Boer

- You may use 1 A4 document with your own notes for this exam and a simple calculator.
- Scientific or graphical calculators, laptops, mobile phones, books etc. are not allowed. *Put those in your bag now!*
- Questions marked with MC must be answered on the separate multiple-choice form, at the number indicated in the circle.
- Other questions have a box in which you can write the answer on this paper; this paper must be handed in.
- Total number of points: 100.
 Total number of pages: 6.

Your name: blease underline your family name (i.e., the name of	on your student card), so that we know how to
our student number:	

1. Binary numbers

4 pt

4 pt

- (a) What is the decimal number –3 expressed as a 6-bit 2-complement binary number?
 - A. 100010
 - B. 100011
 - C. 100100
 - MC**01** D. 101100
 - E. 111011
 - F. 111100
 - G. 111101
 - (b) Considering the 1-complement and 2-complement number representation scheme(s), has/have the property that the first bit is 1 if the number is negative, and 0 if it is positive?
 - A. Neither of them.

(MC02)

- B. Only the 1-complement scheme.
- C. Only the 2-complement scheme.
- D. Both of them.

- (c) Convert hexadecimal 1F0 to decimal. 4 pt
 - A. 240
 - B. 271
 - **MC03**
- C. 272 D. 481
- E. 495
- F. 496
- G. 511
- (d) Convert hexadecimal A1 to binary. 4 pt
 - A. 00011010
 - B. 00010110
 - MC**04**
- C. 00100110
- D. 10001010
- E. 10100001
- F. 10100010
- G. 10101000
- (e) Which of the following operations multiplies a binary number by 7? 4 pt
 - A. Shift to the left by 3 positions.
 - B. Shift to the left by 4 positions.
 - C. Shift to the left by 5 positions.
 - MC**05**

4 pt

4 pt

- D. Shift to the left by 2 positions and then add the original (unshifted) number to it.
- E. Shift to the left by 2 positions and then subtract the original (unshifted) number from it.
- F. Shift to the left by 3 positions and then add the original (unshifted) number to it.
- G. Shift to the left by 3 positions and then subtract the original (unshifted) number from it.
- (f) Suppose we have 4-bit adder for unsigned numbers, which has 4 output bits and a "carry" output; the latter is essentially the 5th output bit needed if the sum exceeds 15.

Now assume we want to use this adder to perform additions of 4-bit 2-complement signed numbers. What should we do with the "carry" output to get correct results for both positive and negative numbers?

You may assume that the 2-complement input numbers are such that their sum is in the range -8 to +7, so it can be represented by the adder's 4 normal output bits.

- A. Just ignore the carry bit.
- B. If the carry bit is a 1, invert the 4 normal output bits.
- C. If the carry bit is a 1, invert the most-significant of the 4 normal output bits. MC06
 - D. If the carry bit is a 1, invert the least-significant of the 4 normal output bits.
 - E. If the carry bit is a 1, add 1 to the result represented by the 4 normal output bits.
 - F. If the carry bit is a 1, subtract 1 from the result represented by the 4 normal output bits.

2. Boolean logic

(a) Give the truth table of a 2-input comparator: if both inputs (X and Y) are equal, the output is 1, and it is 0 otherwise. Note that you have to answer 4 multiple choice questions here; choose A for 0 or B for 1.

X	Y	output
0	0	(MC07)
0	1	MC08
1	0	MC09
1	1	MC10

8 pt

(b) Consider the following derivation in Boolean algebra. For each step, indicate on the multiple-choice

commutative B identity

C complement form which rule is applied, using the following options:

D distributive

E F DeMorgan

this step is not correct

$$\overline{XY} \cdot (\overline{X} + (Y + Z))$$

$$\boxed{\text{MC11}} = (\overline{X} + \overline{Y}) \cdot (\overline{X} + (Y + Z))$$

$$\boxed{\text{MC12}} = \overline{X} + (\overline{Y} \cdot (Y + Z))$$

$$\boxed{\text{MC13}} = \overline{X} + \overline{Y}Y + \overline{Y}Z$$

$$\boxed{\text{MC14}} = \overline{X} + 0 + \overline{Y}Z$$

$$\boxed{\text{MC15}} = \overline{X} + \overline{Y}Z$$

$$\boxed{\text{MC16}} = \overline{XY}Z$$

6 pt	(c)	Sketch a diagram	implementing	the following	formula with on	ly NOR gates:	\overline{A} ·	$\overline{(B+C)}$

- (d) Suppose you take two 2-input AND gates, and feed their outputs into a third 2-input AND gate. 4 pt Does this as a whole work as a 4-input AND gate?
 - A. Yes, it does.

- B. No, a 4-input AND gate is not well-defined.
- C. No, for that we should replace the third AND gate by an OR gate. D. No, for that we should replace the first two AND gates by OR gates.
- E. No, for that we should put inverters at the inputs of the third AND gate.
- (e) Suppose you have a lot of 2-input AND gates. Can you make a NOR gate out of this?
 - MC18
- A. Yes, thanks to DeMorgan's theorem.
- B. No, you'd also need inverters. C. No, you'd also need at least one OR gate.
- D. No, you'd also need inverters and at least one OR gate.
- 3. Problem 3 15 pt

4 pt

	Clock	
Data in	, B	Data out
		Data III
11	` ↑	↑
Write address	 	Instruction
Ţ	Read address 2 Read address 1	

The ALU of the processor above has two instructions: 0 = 'ADD' and 1 = 'MUL'. Furthermore it has four 8-bit registers. Give for this processor the program for computing R1 × (R2 + R3) + R2 and storing the result into R1. (You may not need all timeslots.)

	read address 1 / write address	read address 2	instruction	
Timeslot 0				
Timeslot 1				
Timeslot 2				
Timeslot 3				
Timeslot 4				
Timeslot 5				
·				

Continued on next page...

4. Problem 4

15 pt

Given this AVR program; "BRNE" means "BRanch if Not Equal", "INC" means "Increment (add 1)", "SUB" means "Subtract".

Assume that each instruction takes 1 clock cycle, except jumping to a different address, which takes 2 clock cycles.

(a) Fill in the below table with the status of the registers after each instruction; if a register doesn't change from one line to the next, you may leave it blank.

R17	R18	R19	R20	R21

LDI	R17,	\$01
LDI	R18,	\$04
LDI	R19,	\$02
LDI	R20,	\$08
INC	R18	
ADD	R18,	R19
SUB	R19,	R17
VOM	R21,	R18
SUB	R21,	R20
BRNF.	-5	

5. Proble	em 5
Write as a	e mathematical function that is computed by the code below? function of X and Y, e.g. $f(X, Y) = X + Y$, and explain. nat X and Y are larger than 0, and the result is available in R20.
	R17, \$X
	R18, \$Y
	R19, \$01 R20, \$01
label1:	
ADD	R17, R19
	R19, R20
	R18, R20
BRNE I MOV	R20, R17
110 V	1020, 1011

End of this exam.