Q1 (30 points)	Q2 (5 points)	Q3 (20 points)	Q4 (10 points)	Q5 (35 points)	

Test of Operating Systems and Computer Networks (2019-201700139-1A)

October 11, 2019, **13:45–14:45 (total duration: 60 mins)**Module coordinator: Doina Bucur, Instructor: Suzan Bayhan

- You may use 1 A4 document with *your own notes as cheatsheet* for this exam and a *simple* calculator. You can use scrap paper.
- Graphical calculators, laptops, mobile phones, books etc. are not allowed. Please put those in your bag now!
- Total number of points: 100. Total number of pages: 6.

Total number of points: 100. Total number of pages: 6.	
Your name: (please <u>underline</u> your family name (i.e., the name on y so that we know how to sort)	our student card),
Your student number:	
Tour student number.	
Q1. Operating Systems (total 30 points) The below questions are multiple choice questions and only one answer must be	e selected.
a) [5 points] Which of the following is FALSE?	
(choose one and write in the box, no explanation is needed)	
A- An operating system acts as a resource allocator and manages resource allocation	between applications.
B- An operating system is a program controlling the execution of all other programs.	
C- An operating system runs only after the user starts browsing the web.	
D- One can have two or more different operating systems running on a computer by th	e help of virtual
machines.	
E- Windows, Linux, and Android are some well-known examples of operating systems.	
b) [5 points] A computer can operate in at least two modes. These two modes of	operation
are:	
(choose one and write in the box, no explanation is needed)	
A) supervisor mode and system mode	
B) kernel mode and privileged mode	
C) physical mode and logical mode	
D) user mode and kernel mode	U
E) hardware mode and software mode	

c) [5 points] How can an operating system avoid the CPU being blocked by a procest computation-intensive and therefore needs long CPU time?	s that is
(choose one and write in the box, no explanation is needed) A- The process is put into blocked state to avoid it running for a long time. B- The CPU has a time-out mechanism which puts the executing process after this time-out period to the waiting queue. C- The operating system allocates a separate memory space to each process. D- Computation-intensive processes are scheduled separately on a different CPU.	В
d) [5 points] Can a user run a program which requires memory larger than the	
main memory of the computer? (choose one and write in the box, no explanation is needed) A- No, because CPU implements time-outs. B- No, because the process must be fully copied to the main memory for execution. C- Yes, because the hard disk can be used as virtual memory to pretend that there is	С
more memory than there physically is. D- Yes, because process can be compressed to fit into main memory.	
e) [5 points] Why does a file containing a single byte, typically use 4096 bytes of	
hard disk space? (choose one and write in the box, no explanation is needed) A- This might happen due to an operating system error and must be fixed. B- Because a file's metadata is usually large and would need a lot of space. C- Because each file gets allocated enough space to grow to the maximum allowed size, which is 4096 bytes. D- Because hard disk space is allocated in blocks of 4096 bytes.	D
Q2- Operating System: [5 points]	
a) [5 points] Suppose a process is started. During its execution, this process experiences operating system time-outs <i>two</i> times. Moreover, this process waits for user input <i>three times</i> . How many times does this process pass through the <i>waiting</i> state? (write one number in the box, no explanation is needed)	6
Q3- Computer Networks (total 25 points) The below questions are multiple choice questions and only one answer must be se	elected.
a) [5 points] Layered design of the Internet provides advantages in many ways. Which of the following is NOT one of these advantages?	
A- Layered design makes it easier to discuss and understand a very complex system. B- It provides a modular structure which makes updating system components easier. C- It helps the processes to run without going into blocked state. D- It decreases complexity of the design by separating services each layer must	C
D- it decreases complexity of the design by separating services each layer must	

provide.

b) [5 points] In the hourglass model of the Internet protocols, the thin-waist of the Internet is	
(choose one and write in the box, no explanation is needed)	Α
A- IP because it is the only protocol at the network layer.	
B- TCP because it guarantees delivery of the packets via acknowledgements.	
C- UDP because it is a lightweight transport protocol.	
D- HTTP because it is used for web browsing.	
c) [5 points] Which of the following is FALSE?	
(choose one and write in the box, no explanation is needed)	
A- A TCP connection is uniquely identified by source and destination IP addresses and	
source and destination ports at each end.	
B- A TCP connection is a bidirectional connection between two hosts.	
C- A TCP connection has always the same port number at both hosts.	
D- TCP is a transport layer protocol.	
d) [5 points] Which of the following is TRUE? (choose one, no explanation needed)	
A- A TCP acknowledgement number is the sequence number of the last byte of the	
application-layer data that has been received (by the sender of the TCP packet).	В
B- The sequence number is the byte number of the first byte of data in the TCP packet	
sent.	
C- A TCP packet must always have application-layer data.	
D- A TCP packet carries either the application-layer data or the acknowledgement informat	ion.
e) [5 points] Which of the following is FALSE?: (choose one, no explanation	
needed)	
A- In circuit switching, physical path is established between the two communications	
end points.	
B- Circuit switching is a good option when the users need a constant number of bits	
per second.	
C- Packet switching reserves bandwidth for each packet before the packet is sent.	
D- In packet switching, packets travel independently from each other and might follow difference of the packet switching.	rent paths.

Q4: Computer Networks (10 points)

In Table 1, you see a few network packets as displayed by Wireshark (relative sequence numbers are shown).

Table 1: Wireshark trace

Packet#.	Source IP	Dest. IP	Source/Dest. Port	Info
1	130.89.177.195	129.24.28.228	$50655 \rightarrow 80$	[SYN] Seq=0 Len=0
2	130.89.177.195	129.24.28.228	$50656 \rightarrow 80$	[SYN] Seq=0 Len=0
3	129.24.28.228	130.89.177.195	$80 \rightarrow 50656$	[SYN, ACK] Seq=0 Ack=1 Len=0
4	130.89.177.195	129.24.28.228	$50656 \rightarrow 80$	[ACK] Seq=1 Ack=1 Len=0
5	130.89.177.195	147.14.18.22	$4508 \rightarrow 443$	[SYN] Seq=0 Len=0
6	130.89.177.195	114.229.218.63	$4517 \rightarrow 23$	[SYN] Seq=0 Len=0

a) [5 points] How many different TCP connections are there in this trace? (one number, no explanation needed)

4

e) [5 points] How many of the connections in the above table have completed their handshake and are ready for application-layer data exchange? (one number, no explanation needed)

1

Q5- Computer Networks - delay calculation (total 35 points)

Consider a network consisting of an endhost A, two routers B and C, and an endhost D. The only path from A to D is via B and C. The link speeds and distances between two endpoints are as indicated in the figure.

We assume that the processing time needed by routers B and C to decide where to send the packet, is negligible. We also assume that signals travel over the cables at a speed of 200 000 km/s. There is no other traffic in the network other than host A's traffic.

An application on host A generates two packets as follows:

- the first packet: at t=0 ms, a packet of 2000 bits
- the second packet: at t=1 ms, a packet of 1000 bits

[12 points] a) For the <u>FIRST PACKET</u>, calculate the transmission and propagation delays on each of the links, or indicate why it is negligible. If it is zero, write 0 in the box. Show your calculation and write the answer with units, i.e., ms.

Transmission delay on link A-B	Propagation delay on link A-B			
Packet size/link tx rate = 2000 bits/1 Mbps = 2 ms	distance/signal propagation speed = 2000 km/ 200000 km/s = 10 ms			
Transmission delay on link B-C	Propagation delay on link B-C			
Packet size/link tx rate = 2000 bits/2 Mbps = 1 ms	distance/signal propagation speed = 1000 km/ 200000 km/s = 5 ms			
Transmission delay on link C-D	Propagation delay on link C-D			
Same as transmission delay from A-B: Packet size/link tx rate = 2000 bits/1 Mbps = 2 ms	Since the distance is very short, it is negligible, ~ 0 ms			

[6 points] b) At what time will the first packet arrive completely at host D? Write the arrival time in ms in the below box.

20 (ms)

Pk generate d	Generati on Time	First bit leaves A	All bits totally leave A	From A to B (10 ms) arrival to B	First bit leaves B	All bits totally leave B	From B to C (5 ms) arrival to C	First bit leaves C	All bits totally leave C	From C to D (0) ARRIVES AT D
0 (2000 bits)	0	0	2	12	12	13	18	18	20	20
1 (1000 bits)	1 (waits till first packet totally leaves A)	2	3	13	13	13.5	18.5 (waits till first packet totally leaves C)	20	21	21

[4 points] Does the first packet experience any queuing delay?

- A) Yes, at node A
- B) Yes, at node B
- C) Yes, at node C
- D) Yes, at node D
- E) No, it does not experience any queuing delay

[9 points] c) At what time will <u>the second packet</u> arrive completely at host D? Write the arrival time in ms in the below box.

21 (ms)

[4 points] Does the second packet experience any queuing delay?

- A) Yes, only at node A
- B) Yes, only at node B
- C) Yes, at A and C
- D) Yes, at A, B, and C
- E) No, it does not experience any queuing delay