
UT/EWI – Network Systems 2019 Test 3 (2019-03-22) answers

Network Systems (201600146/201600197), Test 3
March 22, 2019, 13:45–15:15

Answers

1. Addressing and IPv6

(a) B. B. C. C. A. A. C. B. C.3 pt

(b) A.1 pt

A tunneled packet contains not only the complete IPv6 packet, but also an IPv4 header of 20 bytes (assuming
no header options). The total packet must not be larger than the MTU, so effectively 20 bytes fewer remain
for the IPv6 packet.

(c) D.1 pt

(d) C.1 pt

(e) C.1 pt

In IPv4, routers do the fragmentation all by themselves; they don’t need ICMP packets for that.
In IPv6, routers can’t do fragmentation; instead, if they find a packet is too large, they send an ICMP message
to the sender of that packet, so the sender can re-send it in smaller fragments. If ICMP packets are blocked,
such a notification would never reach the sender, so the sender will never re-send the packet in appropriately
sized fragments.

2. Routing

(a) (A, 0), (B, 1), (C, 2)1 pt

(b) (A, 0), (B, 1), (C, 2), (D, 7)2 pt

(c)2 pt

(d) 24.1 pt

First, A tells C that the cost is 5.
Then C tells A that the cost is 7.
Then A tells C that the cost is 9.
Then C tells A that the cost is 11.
... and so on ...
Then C tells A that the cost is 99.
Then A tells C that the cost is 101.
... and then C realizes its direct link to B, at cost 100, is cheaper.

The cost reported by C to A increases in steps of 4, from 7 to 99: that’s a total of
99 − 7

4
+ 1 = 24 packets.

We also accepted 48, which would be correct if you asssume all nodes send updates every timeslot, rather
than only if there’s a change.

(e) D.1 pt

(f) B.1 pt

1 (of 3)

UT/EWI – Network Systems 2019 Test 3 (2019-03-22) answers

(g) A.1 pt

The statement is not true for LS simply because in LS counting to infinity does not occur (so there’s nothing to
be solved).
The statement is not true for DV either: counting to infinity does occur in DV but cannot be solved this way.
It’s more the other way around: the fact that a link cost becomes infinite (representing the failure of the link)
causes or starts the problem.

(h) C.1 pt

(i) C.1 pt

3. Transport layer protocols

(a)
B

ESTABLISHED

ti
m

e
o

u
t

A

.....

ESTABLISHED

40 databytes, seq=301 ack=1001

.....

.....

seq=..... ack=.....
.....

.....

.....

.....seq=....
 ack=....

the connection
application closes

20 databytes, seq=....
 ack=....

20 databytes, seq=....
 ack=....

seq=..... ack=.....

.....

.....

ESTABLISHED

ESTABLISHED

ESTABLISHED

341

FIN_WAIT_2

FIN_WAIT_1

CLOSE_WAIT

CLOSE_WAIT

341
1021

342

1021

FIN

341

1001

1001

341

1021

ESTABLISHED

ESTABLISHED

5 pt

Some notes:

• Until the application closes the connection, both sides are in the ESTABLISHED state. It was given that
the connection was already set up before the diagram starts, so there’s no need for SYN packets and
associated states.

• Only the application at A closes the connection (this was given), so B does not yet send a FIN within
this diagram.

• Be careful about how the seq and ack numbers change. Ack is always the next expected sequence
number from the other side, so if the other side sends 40 bytes with sequence number 301, that packet
contains bytes numbered 301...340, so next expected is 341.

• The FIN flag counts as if it takes 1 byte in the sequence number space, that’s why the ack number in the
last packet is 1 higher than the seq number in the previous packet (which had the FIN flag set).

2 (of 3)

UT/EWI – Network Systems 2019 Test 3 (2019-03-22) answers

(b) E.1 pt

(c) C.1 pt

This is a so-called “half open” connection.
Host A has already sent a FIN flag, so it cannot send any more new data.
Host B has not yet done so, so it can still send new data.

(d) C.1 pt

(e) B.1 pt

In such a URL, the port number on which the server is listening is specified explicitly, instead of using the
default 80.

(f) C.1 pt

TCP always sets the ACK flag, except in the first SYN packet because then it does not yet know the other
side’s sequence number, so it cannot acknowledge anything.
Setting the ACK flag (and setting a correct number in the acknowledgement number field) even if there is no
new data to be acknowledged, is useful in case an earlier packet which did acknowledge new data is lost.

(g) D.1 pt

Window scaling is needed to fully utilize a link when the bandwidth delay product is larger than 65535 (i.e.,
the largest possible receive window without window scaling).
PAWS is needed when more than 232 bytes are transferred within the maximum time an IP packet can live,
taken as 2 minutes.
So the situation where window scaling is useful without PAWS is when the bandwidth delay product is large,
but the bandwidth is below 232 bytes per 2 minutes.

(h) B.1 pt

3 (of 3)

