Kenmerk: TW2014/DWMP/024/ha

Course : Discrete Mathematics for Computer Science

Date : October 21, 2014 Time : 10.45-12.30 hrs

Motivate all your answers. The use of electronic devices is not allowed. A formula sheet is included.

In this exam: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}.$

1. Let \mathcal{U} be a universe and let $A, B \subseteq \mathcal{U}$ be sets. Furthermore let I be a nonempty index set and let, for each $i \in I$, $A_i \subseteq \mathcal{U}$ be a set. Give quantified expressions for the following statements.

(a) [3 pt]
$$\overline{A} \cap B = \emptyset$$
.

(b) [3 pt]
$$\bigcup_{i \in I} A_i = \mathcal{U}.$$

[6 pt]
 Prove the following equivalence using the "Laws of Logic".

$$((p \to q) \land (\neg q \land (r \lor \neg q))) \Longleftrightarrow \neg (p \lor q).$$

3. [6 pt]
Let A, B and C be sets in a universe \mathcal{U} .

Prove that: $A - (B \cup C) = (A - B) \cap (A - C)$.

4. [6 pt] Let the sequence of numbers a_1,a_2,a_3,\ldots be given by: $a_1=3,\,a_2=12,$ and for $n\geq 3$: $a_n=2a_{n-1}+5a_{n-2}.$

Prove with mathematical induction that for all $n \in \mathbb{Z}^+$, $a_n \leq \left[\frac{7}{2}\right]^n$.

5. [6 pt] Let A and B be sets, $f:A\to B$ a function and $A_1,A_2\subseteq A$. Prove that if f is one-to-one, then $f(A_1\cap A_2)=f(A_1)\cap f(A_2)$.

6. [6 pt] Let $A = \{1, 2, 3, 4, 5, 6\}$ and let R be the relation on A given by:

$$xRy$$
 if and only if $x^2 - y^2$ is divisible by 3.

Show that R is an equivalence relation on A and determine the partition of A induced by R.

Total: 36 points