yd

EXAMINATION
Modeling and Analysis of Concurrent Systems 2

course code: 192135320
date: January 30, 2015
time: 13.45-16.45

General

m This is an *open book’” exam. Printed handouts (slides, articles, book chapters) may be used, but no
handwritten notes, previous examinations, or their answers.

m This exam consists of 3 pages with 7 questions. In total 100 points can be earned:
e 70 points with the material of the main lectures, (Question 1-4)

e 30 points with the material from the research papers, (Question 5-7).

PART I: Basic Lectures
In Question 1 and 2, the following Kripke structure is considered:

{} {} {g}
@0\ S1 82 ]

{r} {r}
Question 1 (16 points)
Consider the following formulas from CTL*:
1) AGg 2) AFG—q 3) EF AGgq
A. Which of the three formulas above are in LTL and which are in CTL? (no explanation needed)

B. Which of the formulas above hold in sg, according to normal CTL* semantics? (short explanation)

C. Next, we consider a single fairness constraint p, i.e. {{s3, s4}}.
Indicate which of the formulas above hold in sg, using the fair CTL* semantics. (short explanation)

Question 2 (18 points)

Next, we apply the symbolic model checking algorithm on the previous Kripke structure.

A. Rewrite the formula AG —gq into the proper EX, EU, EG fragment.

B. Demonstrate the iterations of the symbolic model checking algorithm when computing the set of sta-
tes in the previous Kripke structure that satisfy AG—gq. (It is not required to present BDD notation.)

C. The states that satisfy EG —q under fairness constraint {p} can be computed by a nested fixed point
computation. Write down the precise fixed point expression, using least (x) and/or greatest (v) fixed
point operators? (It is not required to evaluate it.)



2 Exam Modeling and Analysis of Concurrent Systems 2 — January 30, 2015

Question 3 (18 points)

A. Provide the OBDD-representations of the following two formulas, using variable ordering p < g < 7:

e p+q<>rand
e (perg)AT.

B. The recursive BddApplyAnd function can be used to compute the conjuction (A) of these two BDDs.

(i) Number the nodes in your BDDs and draw the call graph of BddApplyAnd.

(ii) Indicate clearly at which point(s) a result from the Operations Cache is reused.

C. Explain why the Operations Cache is required to compute BddApplyAnd in polynomial time.

Question 4 (18 points)

We consider a run of the IC3 algorithm for incremental inductive verification, with set of initial states I and
set of bad states —p. After three iterations, we found I = Fy C F; C F5, C F3 C p. Assume that we find
some s € F3 with s — t butt ¢ p. In that case IC3 tries to remove s from F3 and to propagate this back by
removing predecessors of s from F5, etc.

A. Draw this situation in a Venn diagram.

B. Show that it follows from the four main invariants of the IC3 algorithm that s /nF5.
Is it possible that there is no predecessor of s in F5? (short explanation)

How does IC3 avoid that counterexamples (like s) will be eliminated one by one?

Explain when IC3 can conclude that there is a real counterexample to AG—p.

ootliilos (=l

Explain when IC3 can conclude that the property AG—p holds.

[SEE ALSO PAGE 3]



Exam Modeling and Analysis of Concurrent Systems 2 — January 30, 2015 3

PART IlI: Student Lectures

This part considers the following research papers studied during the course:

mcr
clt
Irn
bmc
tpn
car

smc

Multi-core Reachability (Laarman, van de Pol, Weber) [Lecture 3]
Efficient State storage with Cleary Tables (Dillinger, Maniolis)

Learning to Divide and Conquer (Pasareanu, etal.)

Bounded Model Checking with SAT (Clarke, Biere, etal.)

Timed-Arc Petri Nets (Viesmose, Moesgaard etal.)
Counterexample-Guided Abstraction Refinement (Clarke, Grumberg etal.)
Software Model Checking: the VeriSoft approach (Godefroid)

Question 5 (s points)

Paper [Irn] uses the L* learning algorithm in compositional verification.
Indicate if the following statements are right or wrong.

A.
B.
C.
D.

The L* algorithm learns assumptions on the component to be verified
The L* algorithm learns the properties to be verified on the component
The L* algorithm learns assumptions on the environment of the component to be verified

The L* algorithm learns counter examples to the property to be verified

Question 6 (s points)

Both papers [mcr] and [clt] discuss efficient hash table implementations.
Indicate if the following statements are right or wrong?

A.
B.
C,

D.

[clt] uses less memory than [mcr], because [clt] doesn’t store full hash keys, while [mcr] does.
Both [clt] and [mcr] use some variant of linear probing, because this helps to avoid cache misses.

In [mcr], an inserted entry will always stay on the same position, while in [clt] inserted entries might
move up or down by later insertions.

Although not mentioned explicitly in [clt], that implementation must contain some locking primitive,
like the compare-and-swap operation, as used in [mcr].

Question 7 (14 points)

Many algorithms apply forward reachability, based on breadth-first-search from the initial state. Indicate
which of the following methods explore all concrete states. (provide a short to-the-point explanation.)

A.

25 S = -

Inductive Incremental Verification (IC3)

. SAT-based bounded model checking as in [bmc]

BDD-based symbolic model checking

The CEGAR approach as in [car]

The model checker TAPAAL for Timed-arc Petri Nets from [tpn]
The Software Model Checker VeriSoft [smc]

The multi-core model checker from [mcr] (in BFS mode)



