UNIVERSITEIT TWENTE.

Examination Operating Systems
Bachelor year 2, Computer Science, EWI

Module/course code: Computer Systems

Date: 11 November 2016

Time: 13:45-15:45 (+25% for students who may use extra time)
Module-coérdinator: Andre Kokkeler

Instructor: Pieter Hartel

100% of the marks: 60 credits

Type of test:
e Closed book

Allowed aids during the test:
* Nothing

Attachments:
e Various Linux Manual pages

Additional remarks:
* Read these instructions and the questions carefully! If the questions are unclear, you can ask

for clarification.

® Please make sure that your name and student number appear on all answer sheets.

e Try to give precise answers using appropriate terminology. For multiple-choice questions
there may be more than one correct answer; all of these must be selected for full marks.

® Unreadable or extremely long answers will not be marked. Multiple-choice answers that are
ambiguous will not be marked either.

® Youareonly allowed to use your writing materials and the Linux man pages provided during
the exam.

e Feel free to give your answers in English.

Nr:

1.3

Consider the two C-programs Uname.c and Vname.c below:

/* Uname.c */
#include <stdio.h>
#include <sys/utsname.h>

int main(int argc, char * argv[]) {
struct utsname u;
if (uname (&u) == 0) {
printf ("%s %s %s %s\n",

u.nodename, u.sysname,
u.release, u.machine);

}

return 0;

}

/* Vname.c */

#include <stdio.h>
#include <stdlib.h>
#include <sys/utsname.h>

int main(int arge, gchar, t argvil) [
struct utsname *v = malloc (sizeof (struct utsname)) ;
if (uname (v) == 0) {
printf("%s %s %s %s\n",
v->nodename, v->sysname,
v->release, v->machine);
}

return 0;

(a) What is the main difference between the two programs? Explain.
(b) What is the main similarity of the two programs? Explain.

7 credits

Nr:

3:9

Q: | Consider the C program fragment below:
int main(int argc, char *argv[]) {
pid & pid=fork() ;
printf ("$s\n", argv[0]);
if (pid==0) ({
static char *argv[]={"echo","Foo",NULL};
execv ("/bin/echo", argv) ;
exit (127);
} else {
waitpid(pid, 0,0);
}
return 0;
}
Assume that the compiled version of the program is executed as “. /a.out A B”.
(a) What is the purpose of the first argument to the execv system call?
(b) What will be the contents of the argv array to the main function of the echo
program? Explain.
(c) What is the purpose of the call to waitpid?
(d) Under which circumstances might the exit function be called?
C: | 7 credits

Nr:

4.10

Consider the C program fragment below:

void *tproc(void *arg) {
static char *argv[]={"echo", "Foo",NULL} ;
execv ("/bin/echo",argv) ;

}

int main(int arge;’ chazi*atgv[]ioy
int targ = 03
pthread t tid;
pthread create(&tid, NULL, &tproc, &tarqg);
printf ("$s\n", argv[0]);
pthread join(tid,NULL) ;
return 0;

(a) How many threads will be created when this program is run by the shell? Explain.
(b) What is the output of the program? Explain.
(c) Is the output always the same? Explain.

7 credits

Nr:

5.10

Assume that the C-program of which the main fragment is shown below runs on a single
core computer.

#define
#define
#define
#define

=< WO
N N

690

/* Burn about N * 10 ms CPU time */
void loop (int N) {
1RT 1z s K :
for(i = 0; 1 < N; i++) {
for(j = 0; J < M; j++) {
for(k = 0; k < M; k++) {
}

}

int main(int argc, char *argvil])
for(int p = 0; p < P; p++) {
for(int g = 0; g < Q; g++) {
int child = fork();
1f [child == §) {
child = getpid();
setpriority (PRIO_PROCESS, child, p) ;
for(int r = 0; r < R; r++) {
loop(100);

}
exit (0) ;

}
}

return 0;

(a) How many child processes are created by the main process? Explain.

(b) Which of the child processes will terminate first and which will terminate last?
Explain.

(c) Would your answer for (b) remain the same if the program would be run on an 8
core system with plenty of RAM? Explain.

7 credits

Nr:

6.8

A semaphore satisfies the following invariants:
$20
S = So + #Signals - #Waits
where
So is the initial value of S
#Signals is the number of executed Signal(S) operations
#Waits is the number of completed Wait(S) operations

Given the two concurrent processes below, prove the mutual exclusion property, using
the two semaphore invariants. Sg is initialised to 1 before the processes start.
while (true) ({ while (true) {
al: Non Critical Section 1; az: Non Critical Section 2;
bl: Wait (S); b2: Wait (S);
cl: Critical Section 1; c2: Critical_ Section 2;
dl: Signal (8); d2: Signal (S);
) } o
C: | 7 credits

Nr:

7.6

Consider the program fragment below, representing a semaphore solution to the dining
Philosophers problem. Assume that all semaphores have been initialised correctly and
that there are three threads, one for each of the three philosophers with k=0, k=1 and
k=2,

#define N 5
#define P 3

sem t Room; /* Initialised to P-1 */
sem t Fork({P]; /* initialized ko 1.#*/
void *tphilosopher (void *ptr) {
int i, k = *{(ifa%& *JIptrys
for(ii= 134 <=aNgHa 590
printf("Tnk %d 2dRR",;oks ile
sem wait (&Room) ;
sem wait (&Fork[k]) ;
sem wait (&Fork[(k+1) % P]) ;
printf ("Eat %d %d'\n", k, 1}
sem post (&Fork[k]) ;
sem post (&Fork[(k+1) % P]) ;
sem_post (&Room) ;
}
pthread exit (0);

(a) Give an example of the output of the program.

(b) Assume that N= infinity, then show that it possible for two of the philosophers to
conspire so that a third philosopher will starve. Explain the scenario.

(c) How could the starvation problem be solved?

7 credits

Nr:

9.7

Consider the C-program fragment with numbered lines below:

1 int main(int argc, char *argv([]) {
2 int in = open(argv[1l], O RDONLY) ;
3 int out = open (argv([2],
4 O_RDWR|O_CREAT|O_TRUNC, 0666) ;
5 size t sz = lseek(in, 0, SEEK END) ;
6 lseek(out, sz - lt SEEK_SET);‘
7 write(out, r "A0"pad) ;
8 void *src = mmap (NULL, sz,
9 PROT READ, MAP PRIVATE; sifigs0) »
10 void *tgt = mmap (NULL, sz,
11 PROT WRITE, MAP SHARED, out, 0);
12 memcpy (tgt; src,”szl:
13 munmap (src, sz);
14 munmap (tgt, sz);
15 close (in) ;
16 close (out) ;
17 return 0;
18 }

The system call trace of the program obtained from “strace ./a.out Mmap.c Foo” lists

the following system calls:

open ("Mmap.c", O RDONLY) = 3
open ("Foo", O_RDWR|O CREAT|O TRUNC, 0666) = 4
lseek (3, O, SEEK END) = 1393
leeskid, 1392 SEEK SET) = 1392
write (4, "\O", 1) = 1

mmap (NULL, 1393, PROT READ, MAP. PRIVATE, 3, 0)
0x7f1e10da0000

mmap (NULL, 1393, PROT.WRITE, MAP SHARED, 4, 0)
0x7f1e10d9£000

munmap (0x7£1e10da0000, 1393) 0
munmap (0x7£1e10d9f000, 1393) =0
close (3) 0
close (4) 0

(a) How many bytes long is the file Mmap.c?

(b) Why is there no read system call reading the Mmap.c file?
(c) Why is there no write system call writing out the file Foo?
(d) What is the purpose of the memcpy function?

(e) Why does the memcpy function not show up in the strace?

4

7 credits

Nr:

11.10

Consider the C-program fragment below:

int main(int argc, char * argv([]) {
DIR *dirp = opendir(argv[1l]) ;
if (dirp != NULL) {
struct) ditrent «*dps;
while (dp = readdir(dirp)) {
char it
switch(dp->d type) {

case DT BLK t = 'b' ; break ;
case DT CHR t = 'c' ; break ;
case DT DIR t = 'd'" ; break ;
case DT FIFO t = 'p' ; break ;
case DT LNK T 'l1' ; break ;
case DT REG t = '-'" ; break ;
case DT SOCK t ="'s' ; break ;
case DT UNKNOWN t = 'u' ; break ;
default t="'2'";

}
printf ("%8d %c %s\n",
(int)dp->d ino, t, dp->d name) ;
}

closedir (dirp);

}

return 0;

(a) When does the while loop terminate? Explain.

(b) What type of file would be labelled with a ‘b’?

(c) What type of file would be labelled with a ‘c’?

(d) What is printed by dp->d_ino?

(e) If the output contains the two lines below, which directory has been given as the

first argument to the program?
2 d
2 d

7 credits

Nr:

12.6

The disk on a particular system has a maximum seek time of 11.68 ms, a data transfer

time of 100MBytes per second and the disk spins at 7200 rpm.

(a) What is the average latency of a disk read, assuming that all delays take place
sequentially?

(b) What is the average transfer rate if the average file is 1MByte?

4 credits

