Kenmerk: TW2016/DWMP/010/ha

Course : Discrete Mathematics for Computer Science

Date : October 28, 2016 Time : 08.45–09.45 hrs

Motivate all your answers. The use of electronic devices is not allowed.

In this exam: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}.$

1. [6 pt]

Let the sequence of numbers $a_0, a_1, a_2, a_3, \ldots$ be given by:

$$a_0 = 1$$
, $a_1 = 1$, $a_2 = 1$, and for $n \ge 3$: $a_n = a_{n-1} + a_{n-3}$.

Prove with mathematical induction that for all $n \in \mathbb{N}$:

$$a_{n+2} \ge \left(\sqrt{2}\right)^n$$
.

- 2. Let A, B and C be sets and let $f: A \to B, \quad g: B \to C$ and $h: B \to C$ be functions.
 - (a) [4 pt] Show that if f is onto, then

$$g \circ f = h \circ f \quad \Rightarrow \quad g = h.$$

- (b) [2 pt] Give an example that shows that the implication in part (a) does not necessarily hold is case f is not onto.
- 3. Let $A = \{1, 2, 3, 4, 5\}$ and let R be the relation on A given by:

$$xRy$$
 if and only if $x^2 - y^2$ is divisible by 8 .

- (a) [4 pt] Show that R is an equivalence relation on A.
- (b) [2 pt] Determine the partition of A induced by R.

Total: 18 points