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So lirr%) f(z) exists, equals 1, and f(0) = 1; so f(x) is continuous at x = 0.
r—r
(b) For x <0 we have f'(z) =0 214+2=0<z = —1.
1
For z > 0 we have f'(z) =0 & N = 0, so here are no solutions.

Critical points are xt = —1 and £ =0
endpoints x = —3 and z = 2
F(=3) =4, f(=1) = 0.(0) = 1 and f(2) = 1 — V2

We conclude: The absolute maximum is 4 and the absolute minimum is 1 — v/2
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Make that we can apply ’'Hopital’s rule:
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(a) f is continuous at (zg, ) by definition:
i. f is defined at (zg, yo)
i im0 (20,40) f (7, y) exists
il img ) (wo,0) £ (2, Y) = f(20,%0)
f is not continuous at (0,0) for since if we approach (0,0) first by the curve

x =y (diagonal) and secondly by the line y = 0 (x-axis) we get different limits:
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So  lim x,1y) does not exist.
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(c) Tangent plane is:
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