UNIVERSITY OF TWENTE

Department of Electrical Engineering, Mathematics and Computer Science

Solution exam Linear Algebra on Friday April 18, 2019, 13.45 – 15.45 hours.

Exercises 1,2,5,7 and 9 only receive points based on the final answer.

Exercises 3,4,6 and 8 require a motivated answer.

1.

Consider the matrix

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix}.$$

Determine A^{-1} .

$$\begin{pmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 3 & -1 & -1 & 1 & 0 \\ 0 & 2 & -1 & -1 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 2 & -1 & -1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & -1 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & -1 & -2 & 3 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & -1 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & 2 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & -1 & 2 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & 2 & -3 \end{pmatrix}$$

and hence:

$$A^{-1} = \begin{pmatrix} 0 & -1 & 2 \\ 0 & 1 & -1 \\ 1 & 2 & -3 \end{pmatrix}.$$

2.

The matrix A given by:

$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 3 \\ 1 & -1 & -2 \end{pmatrix}$$

has eigenvalues in -1, 0 and 1. Find an invertible matrix P and a diagonal matrix D such that

$$P^{-1}AP = D.$$

We need to find the eigenvectors of the matrix A. First we find an eigenvector \mathbf{x}_1 associated to eigenvalue 1, i.e.

$$A\mathbf{x}_1 = \mathbf{x}_1$$

or equivalently:

$$0 = (A - I)\mathbf{x}_1 = \begin{pmatrix} -1 & 1 & 1\\ -1 & 1 & 3\\ 1 & -1 & -3 \end{pmatrix} \mathbf{x}_1$$

We have:

$$\begin{pmatrix} -1 & 1 & 1 \\ -1 & 1 & 3 \\ 1 & -1 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 3 \\ 1 & -1 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & -2 \end{pmatrix}$$

We choose

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Next, we find an eigenvector \mathbf{x}_2 associated to eigenvalue 0, i.e.

$$A\mathbf{x}_2 = \mathbf{0}$$

or, equivalently:

$$0 = A\mathbf{x}_2 = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 3 \\ 1 & -1 & -2 \end{pmatrix} \mathbf{x}_2$$

We have:

$$\begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 3 \\ 1 & -1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ -1 & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

We choose

$$\mathbf{x}_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Finally, we find an eigenvector \mathbf{x}_3 associated to eigenvalue -1, i.e.

$$A\mathbf{x}_3 = -\mathbf{x}_3$$

or, equivalently:

$$0 = (A+I)\mathbf{x}_3 = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 3 & 3 \\ 1 & -1 & -1 \end{pmatrix} \mathbf{x}_3$$

We have:

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 3 & 3 \\ 1 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & 4 \\ 0 & -2 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

We choose

$$\mathbf{x}_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

Therefore, we can choose:

$$P = (\mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_3) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

and

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

3.

Consider the following three vectors:

$$\mathbf{v}_1 = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -2 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 0 \\ 4 \\ -1 \end{pmatrix}.$$

Determine a basis for Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

We have:

$$(\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3) = \begin{pmatrix} -1 & -2 & 0 \\ -1 & 2 & 4 \\ 2 & 3 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 \\ 0 & 4 & 4 \\ 0 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Since we have pivots in the first two columns, we find:

$$\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\} = \operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2\}.$$

and the required basis is equal to:

$$\{v_1, v_2\}$$

4.

Consider the matrices A and B given by:

$$A = \begin{pmatrix} 2 & 2 & -1 \\ 2 & 5 & -2 \\ -1 & -2 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & -2 & -1 \\ 2 & -3 & -2 \\ -1 & 2 & 2 \end{pmatrix},$$

Find all vectors $\mathbf{x} \in \mathbb{R}^3$ for which:

$$A\mathbf{x} = \mathbf{x}$$
 and $B\mathbf{x} = \mathbf{x}$.

x needs to satisfy:

$$(A-I)\mathbf{x} = \mathbf{0}$$
 and $(B-I)\mathbf{x} = \mathbf{0}$

or equivalently:

$$\mathbf{x} \in \text{Null} \begin{pmatrix} A - I \\ B - I \end{pmatrix} \mathbf{x} = \text{Null} \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \\ 1 & -2 & -1 \\ 2 & -4 & -2 \\ -1 & 2 & 1 \end{pmatrix} \mathbf{x}$$

We have:

$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \\ 1 & -2 & -1 \\ 2 & -4 & -2 \\ -1 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & -8 & 0 \\ 0 & 4 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

and hence we find that

$$\mathbf{x} \in \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

5.

Given is that two matrices A and B have the same reduced echelon form. Indicate for each of the following four statements whether they are consequences of the fact that the reduced echelon form of A and B are the same:

- 1) $\operatorname{Null} A = \operatorname{Null} B$,
- 2) $\operatorname{Col} A = \operatorname{Col} B$,
- 3) A invertible implies that B is invertible,
- 4) $\det A = \det B$.

The null space is not affected by elementary row operations and hence property 1 is true.

The column space however is clearly affected by row operations. For instance:

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

have the same reduced echelon form but different column space. Hence property 2 is not true.

A is invertible if the associated reduced echelon form has a pivot in every row and in every column. But then B also has a reduced echelon form with a pivot in every row and in every column which implies B is invertible. Hence property 3 is true.

The determinant is clearly affected by row operations. For instance:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

have the same reduced echelon form but different determinants. Hence property 4 is not true.

6.

Given are two matrices $A, B \in \mathbb{R}^{3\times 3}$ where the columns of A are given by $\mathbf{a}_1, \mathbf{a}_2$ en \mathbf{a}_3 while the columns of B are given by $\mathbf{b}_1, \mathbf{b}_2$ en \mathbf{b}_3 . We have

$$b_1 = 2a_1 - a_3$$
, $b_2 = 2a_3$ and $b_3 = 3a_2 + 2a_3$

and $\det A = 3$. Determine $\det B$.

We have:

$$\det B = \det (\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3) = \det (2\mathbf{a}_1 - \mathbf{a}_3 \ 2\mathbf{a}_3 \ 3\mathbf{a}_2 + 2\mathbf{a}_3)$$

$$= 2 \det (2\mathbf{a}_1 - \mathbf{a}_3 \ \mathbf{a}_3 \ 3\mathbf{a}_2 + 2\mathbf{a}_3)$$

$$= 2 \det (2\mathbf{a}_1 \ \mathbf{a}_3 \ 3\mathbf{a}_2)$$

$$= 12 \det (\mathbf{a}_1 \ \mathbf{a}_3 \ \mathbf{a}_2)$$

$$= -12 \det (\mathbf{a}_1 \ \mathbf{a}_3 \ \mathbf{a}_2)$$

$$= -12 \det (\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3) = 12 \det A = -36$$

7

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation that rotates each point $(x_1, x_2) \in \mathbb{R}^2$ counter clockwise over 120 degrees. Determine the representation matrix of T.

We have:

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2}\sqrt{3} \end{pmatrix}$$

and

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} -\frac{1}{2}\sqrt{3} \\ -\frac{1}{2} \end{pmatrix}$$

and therefore:

$$[T] = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix}$$

8.

Assume that the solution set of the system $A\mathbf{x} = \mathbf{b}$ has at least two solutions, i.e. we have \mathbf{x}_1 and \mathbf{x}_2 with $\mathbf{x}_1 \neq \mathbf{x}_2$ such that $A\mathbf{x}_1 = \mathbf{b}$ and $A\mathbf{x}_2 = \mathbf{b}$. Show that the system $A\mathbf{x} = \mathbf{b}$ has an infinite number of solutions.

If we choose

$$\mathbf{x} = \mathbf{x}_1 + \lambda(\mathbf{x}_1 - \mathbf{x}_2)$$

for an arbitrary constant λ we get:

$$A\mathbf{x} = A \left[\mathbf{x}_1 + \lambda(\mathbf{x}_1 - \mathbf{x}_2) \right]$$
$$= A\mathbf{x}_1 + \lambda(A\mathbf{x}_1 - A\mathbf{x}_2)$$
$$= \mathbf{b} + \lambda(\mathbf{b} - \mathbf{b})$$
$$= \mathbf{b}.$$

Therefore \mathbf{x} is a solution for any choice of λ which clearly yields an infinite number of solutions.

9.

Given is a matrix A parameterized with a constant α :

$$A = \begin{pmatrix} 0 & 0 & \alpha - 1 \\ 2\alpha - 5 & 6 - 2\alpha & 0 \\ \alpha - 3 & 4 - \alpha & 0 \end{pmatrix}$$

Determine all $\alpha \in \mathbb{R}$ for which A is invertible.

We have:

$$\det A = (\alpha - 1) \det \begin{pmatrix} 2\alpha - 5 & 6 - 2\alpha \\ \alpha - 3 & 4 - \alpha \end{pmatrix}$$
$$= (\alpha - 1) [(2\alpha - 5)(4 - \alpha) - (6 - 2\alpha)(\alpha - 3)] = (\alpha - 1)(\alpha - 2)$$

which yields that A is invertible for all $\alpha \in \mathbb{R}$ with $\alpha \neq 1$ and $\alpha \neq 2$.