Solutions Introduction to Mathematics Sample Test 1

1. [2pt]
$$A=\{\frac{k}{k+1}|k\in\mathbb{N}\}.$$
 inf $A=\frac{1}{2}$ $\max A$ does not exist $\min A=\frac{1}{2}$ $\sup A=1$

2. [2pt]

 $p \wedge p$ is neither tautology nor contradiction.

 $p \wedge \neg p$ is a contradiction.

 $p \vee \neg p$ is: a tautology.

 $p \to \neg p$ is neither tautology nor contradiction.

3. [3 pt]

Let $m \in \mathbb{Z}$ and $n \in \mathbb{Z}$. We prove the statement: If the product mn is even, then either m is even, or n is even (or both).

Assume for contradiction that the statement is false. Then there exist $m, n \in \mathbb{Z}$ for which mnis even, but both m and n are not even.

Then m and n are both odd: $\exists x(m=2x+1)$ and $\exists y(n=2y+1)$.

Now,
$$mn = (2x+1)(2y+1) = 4xy + 2x + 2y + 1 = 2(2xy + x + y) + 1$$
,

which is odd, since $2xy + x + y \in \mathbb{Z}$.

This contradicts the fact that mn is even. Therefore our assumption must be false.

We conclude that the statement is true.

4. [3 pt]

Consider statement $S(n):\sum_{i=0}^n \binom{i+2}{i}=\binom{n+3}{n}$ We need to use induction to prove that the statement holds $\forall n\in\mathbb{N}\cup\{0\}.$

Basis Step (n=0)

$$\sum_{i=0}^{0} {i+2 \choose i} = {2 \choose 0} = \frac{2!}{0!2!} = 1.$$

$${0+3 \choose 0} = \frac{3!}{0!3!} = 1,$$

Since these values are equal, S(0) holds.

Induction Step

Suppose S(k) holds for some $k \in \mathbb{N} \cup \{0\}$, that is $\sum_{i=0}^k \binom{i+2}{i} = \binom{k+3}{k}$ (IH). We need to show that $S(k+1): \sum_{i=0}^{k+1} \binom{i+2}{i} = \binom{(k+1)+3}{k+1}$ holds, using the following hint: $\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$ for all $n \in \mathbb{N}, r \in \mathbb{N}, r \leq n$. Well.

$$\sum_{i=0}^{k+1} {i+2 \choose i} = \left(\sum_{i=0}^{k} {i+2 \choose i}\right) + {(k+1)+2 \choose k+1}$$
$$= {k+3 \choose k} + {k+3 \choose k+1}$$
$$= {k+4 \choose k+1},$$

which is what we needed to prove. Here the second equality follows from the induction hypothesis, and the third equality follows from the hint, since $k+3 \ge k$. By mathematical induction, S(n) holds for all $n \in \mathbb{N} \cup \{0\}$.

5.

Consider the set A of numbers consisting of 4 digits, where each digit is from the set $\{1,2,3\}$.

- (a) [1 pt] The final digit of any odd number in A is 1 or 3. We have 2 possibilities for the last digit, and 3 possibilities for each of the other 3 digits. By the product rule, there are $2 \cdot 3^3 = 54$ odd numbers in A.
- (b) [2 pt] As shown in part a), there are $2 \cdot 3^3 = 54$ odd numbers in A. Denote the set of odd numbers in A by B.

 If a number starts with the digit 1, then there are $3^3 = 27$ possibilities for the

If a number starts with the digit 1, then there are $3^3=27$ possibilities for the remaining digits. Denote the set of numbers in A starting with the digit 1 by C. If a number starts with the digit 1, and is odd, then there are 2 possibilities for the last digit, and 3 possibilities for digits 2 and 3, which yields a total of $2 \cdot 3^2 = 18$ possibilities. Therefore $|B \cap C| = 18$.

Now, by the principle of inclusion/exclusion, the amount of numbers in A that are are either odd, or start with the digit 1 (or both) equals:

$$|B| + |C| - |B \cap C| = 54 + 27 - 18 = 63.$$