Questions

1	2	3	4	5

Surname, First name

Intro to Math 19/20

Introduction to Mathematics - Sample Test 1 6 September 2019 09:00 - 12:00

There are three types of questions: "final answer", "open answer" and "multiple choice".

· Final answer

In the text frame below the question, you only provide *one* answer. Do not write down a calculation, explanation or motivation. If you do write down a calculation, explanation or motivation, it will not be taken into account for grading.

· Open answer

You provide a calculation or motivation in the text frame below the question. The calculation or motivation will be graded. Any text outside the frame will be ignored.

Multiple choice

Only one answer is correct. Choose the correct answer by marking it with a black or blue pen or pencil.

· Multiple response

More than one answer may be correct. Choose the correct answer(s) by marking them with a black or blue pen or pencil.

Before you enter a solution into a text frame, elaborate the answer on scratch paper. Do not submit scrap paper.

Exercise 1: Sets

Let $A=\{rac{k}{k+1}\,|\,k\in\mathbb{N}\}$. For each of the following, either write 'does not exist or give its value.

Provide the answer (and only the answer) in the frames below.

0.5p **1a** $\inf A =$

0.5p $\mathbf{1b} \quad \max A =$

0.5p **1c** $\min A =$

0.5p **1d** $\sup A =$

Exercise 2: Predicate logic

For each of the following predicates, determine whether it is a tautology, a contradiction or neither.

These are multiple choice questions; per question, only one answer is correct.

Grading:

4 correct answers: 2 pt 3 correct answers: 1 pt

2 or less correct answers: 0 pt

The amount of points stated in the margin is the maximum amount of points that can be scored for that question.

- 0.5p **2a** $p \wedge p$
 - tautology

neither

contradiction

0.5p **2b** $p \wedge \neg p$

0

tautology

neither

contradiction

0

0.5p **2c** $p \lor \neg p$

tautology

contradiction

- neither
- 0.5p **2d** $p \rightarrow \neg p$

0

tautology

neither

contradiction

0001.pdf 0035198004

Exercise 3: Even and odd

Let $m \in \mathbb{Z}$ and $n \in \mathbb{Z}$. Prove that if the product mn is even, then either m is even, or n is even (or both). Зр 3 Give a full calculation/motivation for your answer in the frame below.

Exercise 4: Mathematical induction

3p **4** Use mathematical induction on n to prove that $\forall n \in \mathbb{N} \cup \{0\}$:

$$\sum_{i=0}^{n} \binom{i+2}{i} = \binom{n+3}{n}.$$

Hint: use that $\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}$ for all $n\in\mathbb{N}$, $r\in\mathbb{N}$, $r\leqslant n$.

Give a full calculation/motivation for your answer in the frame below.

0035198007

Exercise 5: Combinatorics

Consider the set A of numbers consisting of 4 digits, where each digit is from the set $\{1,2,3\}$. For example: $1311 \in A$.

For each question, give a full calculation/motivation for your answer in the frame below the question.

5a How many odd numbers are there in A?

0001.pdf 0035198008

2p

5b How many numbers in A are either odd, or start with the digit 1, or both?