UNIVERSITEIT TWENTE.

Tag : Toetsen/19-20/Calc1A.19-20[03].CorrectionModel.EN

Course : Calculus 1A

Date : Friday October 25th, 2019

Time : 13:45 – 15:45

Solutions

1. (a) [1 pt] Calculate
$$\mathbf{u} = \overrightarrow{PQ} = \langle 2, 2, -1 \rangle$$
 and $\mathbf{v} = \overrightarrow{PR} = \langle 3, 0, -3 \rangle$, then

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} 2 & 2 \\ 3 & 0 \end{bmatrix} \times \begin{bmatrix} -1 \\ -3 \end{bmatrix} \times \begin{bmatrix} 2 \\ 3 \end{bmatrix} \times \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} \langle -6, 3, -6 \rangle \end{bmatrix}$$

Note: Round brackets are also acceptable.

Check Your Answer:

Verify that $\mathbf{u} \perp \mathbf{u} \times \mathbf{v}$ and that $\mathbf{v} \perp \mathbf{u} \times \mathbf{v}$.

(b) [2 pt] If θ is the angle between \mathbf{u} and \mathbf{v} , then

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

Calculate the dot product of ${\bf u}$ and ${\bf v}$:

$$\mathbf{u} \cdot \mathbf{v} = 2 \cdot 3 + 2 \cdot 0 + (-1) \cdot (-3) = 9.$$

Calculate the lengths of ${\bf u}$ and ${\bf v}$:

$$|\mathbf{u}| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$$

and

$$|\mathbf{v}| = \sqrt{3^2 + 0^2 + (-3)^2} = 3\sqrt{2}.$$

Therefore

$$\cos\theta = \frac{9}{3 \cdot 3\sqrt{2}} = \frac{1}{2}\sqrt{2},$$

and consequently
$$\theta = \boxed{\frac{1}{4}\pi} \quad \text{or } \theta = \boxed{45\,^\circ}$$

Check Your Answer:

Use the property $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$ and the result of (a) to verify your answer.

(c) [2 pt] The projection of ${\bf u}$ onto ${\bf v}$ is

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}.$$

Caclulate the constituent parts:

$$\mathbf{u} \cdot \mathbf{v} = 9$$

$$\mathbf{v} \cdot \mathbf{v} = 18.$$

Calculate the projection:

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{9}{18} \mathbf{v} = \boxed{\left\langle \frac{3}{2}, 0, -\frac{3}{2} \right\rangle}$$

Note: Round brackets are also acceptable.

Verify that $\mathbf{v} \perp (\mathbf{u} - \operatorname{proj}_{\mathbf{v}} \mathbf{u})$.

(d) [2 pt] The normal equation of the plane V is

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0,$$

with n a normal vector and p a support vector of V.

Using $\mathbf{n} = \mathbf{u} \times \mathbf{v} = \langle -6, 3, -6 \rangle$ as a normal vector and for example $\mathbf{p} = \overrightarrow{OP}$ as support vector we obtain the equation

$$\langle -6, 3, -6 \rangle \cdot \langle x+1, y-1, z-2 \rangle = 0,$$

 $-6x + 3y - 6z = -3$

which can be simplified to

$$2x - y + 2z = 1$$
 or $z = -x + \frac{1}{2}y + \frac{1}{2}$

Check Your Answer:

Substitute the coordinates of p, Q and R in your equation, and verify whether it holds,

2. (a) [1 pt] Use the 'conjugate trick':

$$\sqrt{1 - \cos x} = \sqrt{1 - \cos x} \cdot \frac{\sqrt{1 + \cos x}}{\sqrt{1 + \cos x}}$$
$$= \frac{\sqrt{1 - \cos^2 x}}{\sqrt{1 + \cos x}} = \frac{\sqrt{\sin^2 x}}{\sqrt{1 + \cos x}}$$

Alternatively, you can prove that $\sqrt{1-\cos x}\sqrt{1+\cos x}=\sqrt{\sin^2 x}$:

$$\sqrt{1 - \cos x} \sqrt{1 + \cos x} = \sqrt{(1 - \cos x)(1 + \cos x)}$$
$$= \sqrt{1 - \cos^2 x}$$
$$= \sqrt{\sin^2 x}$$

(b) [2 pt] Use (a) to rewrite:

$$\frac{\sqrt{1-\cos x}}{x} = \frac{\sqrt{\sin^2 x}}{x\sqrt{1+\cos x}}$$

$$= \frac{|\sin x|}{x\sqrt{1+\cos x}}$$

$$= \begin{cases} \frac{\sin x}{x} \cdot \frac{1}{\sqrt{1+\cos x}} & \text{if } x > 0, \\ -\frac{\sin x}{x} \cdot \frac{1}{\sqrt{1+\cos x}} & \text{if } x < 0. \end{cases}$$

Now use $\lim_{x\to 0}\frac{\sin x}{x}=1$ and $\lim_{x\to 0}\frac{1}{\sqrt{1+\cos x}}=\frac{1}{\sqrt{1+1}}=\frac{1}{2}\sqrt{2}$ to conclude:

$$\lim_{x \to 0^+} \frac{\sqrt{1 - \cos x}}{x} = \frac{1}{2}\sqrt{2} \quad \text{and} \quad \lim_{x \to 0^-} \frac{\sqrt{1 - \cos x}}{x} = -\frac{1}{2}\sqrt{2}.$$

Since left- and right limit are not equal, the two-sided limit of $\frac{\sqrt{1-\cos x}}{x}$ for $x\to 0$ does not exist.

Note: do not award any points for this assignment if $\sin x$ is used instead of $|\sin x|$. Using $\sin x$ would lead to the conclusion that the limit does exist, which clearly contradicts the assumption in the assignment text.

(c) [2 pt] The derivative of f at 0 is

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{\sqrt{1 - \cos h} - 0}{h},$$

which does not exist according to assignment (b).

(d) [2 pt] Differentiate f:

$$f'(x) = \frac{\sin x}{2\sqrt{1 - \cos x}}$$

So f'(x)=0 whenever $\sin x=0$, but $\cos x\neq 1$. For x in the interval $\left[-\frac{1}{2}\pi,\frac{3}{2}\pi\right]$, this is only the case whenever $x=\pi$

If the answer is π :

If the answer is $0, \pi$:

If the answer is $n\pi$ with n odd:

All other answers:

- (e) [1 pt] The absolute minimum is 0
- (f) [1 pt] The absolute maximum is $\sqrt{2}$

Calculation:

Critical points of f on $D = \left[-\frac{1}{2}\pi, \frac{3}{2}\pi \right]$ are 0 and π . Other candidates for extreme values are the boundaries of D.

x	f(x)
$-\frac{1}{2}\pi$	1
0	0
π	$\sqrt{2}$
$\frac{3}{2}\pi$	1

3. [3 pt] If polar coordinates are used, the calculation should look like this:

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^4 + y^4}} = \lim_{r\to 0^+} \frac{r^2 \cos\theta \sin\theta}{\sqrt{r^4(\cos^4\theta + \sin^4\theta)}}$$
$$= \lim_{r\to 0^+} \frac{\cos\theta \sin\theta}{\sqrt{\cos^4\theta + \sin^4\theta}},$$

which depends on θ . So for example if $\theta=0$ (approach (0,0) along the positive x-axis), then the limit is 0 (because $\cos\theta=1$ and $\sin\theta=0$). But if for example $\theta=\frac{1}{4}\pi$ (approach (0,0) along the positive y-axis), then the limit is $\frac{1}{2}\sqrt{2}$.

If approaching (0,0) along a line is used: let $y = \alpha x$ for some value of α , then

$$\lim_{\substack{(x,y)\to(0,0)\\\text{along line }y=\alpha x}}\frac{xy}{\sqrt{x^4+y^4}}=\lim_{x\to 0}\frac{\alpha x^2}{\sqrt{(1+\alpha^4)x^4}}=\frac{\alpha}{\sqrt{1+\alpha^4}}.$$

So for instance, if (x,y) is on the x-axis, then y=0, which can be achieved by choosing $\alpha=0$. In that case the limit is 0.

If (x,y) is on the line y=x, then $\alpha=1$, and consequently the limit is $\frac{1}{2}\sqrt{2}$.

4. [3 pt] The equation for the tangent plane through (a, b, f(a, b)) is

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b). \tag{*}$$

Calculate the partial derivatives of f:

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 - y,$$

$$\frac{\partial f}{\partial y}(x,y) = -x - 2y.$$

Evaluate f and the partial derivatives at (a,b)=(1,-1):

$$f(1, -1) = 1,$$

$$\frac{\partial f}{\partial x}(1, -1) = 4,$$

$$\frac{\partial f}{\partial y}(1, -1) = 1.$$

Write down the equation of the tangent plane (fill out all results in (*)):

$$z = 1 + 4(x - 1) + 1(y - (-1)),$$

$$z = 4x + y - 2.$$

The equation may be rearranged, like

$$4x + y - z = 2.$$