UNIVERSITEIT TWENTE.

Tag : Toetsen/19-20/Calc1A.19-20[01].SampleTest1.Solutions.EN

Course : Calculus 1A

Solutions

1. (a) [1 pt] Define $\mathbf{u}=\langle -1,2,2\rangle$ and $\mathbf{v}=\langle 4,-3,0\rangle$, then

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} -1 & 2 \\ 4 & -3 \end{bmatrix} \times \begin{bmatrix} 2 \\ 4 & -3 \end{bmatrix} \times \begin{bmatrix} -1 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} \langle 6, 8, -5 \rangle \end{bmatrix}$$

Check Your Answer:

Check that $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$ and $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$.

(b) [2 pt] If θ is the angle at P, then

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

Calculate the dot product of ${\bf u}$ and ${\bf v}$, and the lengths of ${\bf u}$ and ${\bf v}$:

$$\mathbf{u} \cdot \mathbf{v} = -10,$$

 $|\mathbf{u}|^2 = \mathbf{u} \cdot \mathbf{u} = 9,$
 $|\mathbf{v}|^2 = \mathbf{v} \cdot \mathbf{v} = 25.$

Therefore
$$\cos \theta = \frac{-10}{3 \cdot 5} = -\frac{2}{3}$$
.

Check Your Answer:

Observe that $\sin^2\theta=1-\cos^2\theta=\frac{5}{9}.$ Use this to check that the equality $|\mathbf{u}\times\mathbf{v}|=|\mathbf{u}||\mathbf{v}|\sin\theta$ holds.

(c) [2 pt] The projection of ${\bf u}$ onto ${\bf v}$ is

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v}$$

With $\mathbf{u} \cdot \mathbf{v} = -10$ and $|\mathbf{v}|^2 = 25$ (see (c)), we obtain

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = -\frac{10}{25} \mathbf{v} = -\frac{2}{5} \mathbf{v}$$
$$= \left[\left\langle -\frac{8}{5}, \frac{6}{5}, 0 \right\rangle \right]$$

Check Your Answer:

With $\mathbf{w} = \operatorname{proj}_{\mathbf{v}} \mathbf{u}$, check that $(\mathbf{u} - \mathbf{w}) \perp \mathbf{v}$.

2. [3 pt] The normal equation of the plane is

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0,$$

with n a normal vector and p a support vector of V.

Using ${\bf n}=\overrightarrow{PQ}\times\overrightarrow{PR}$ as a normal vector and for example ${\bf p}=\overrightarrow{OP}$ as support vector we obtain the equation

$$\begin{array}{l} \langle -9,3,-3\rangle \, \boldsymbol{\cdot} \langle x-3,y-2,z+1\rangle = 0, \\ \langle -3,1,-1\rangle \, \boldsymbol{\cdot} \langle x-3,y-2,z+1\rangle = 0, \end{array} \text{) divide by } 3 \\ \text{) simplify the dot product}$$

which can be simplified to

$$\boxed{3x - y + z = 6} \quad \text{or} \quad \boxed{z = 6 - 3x + y}$$

Check Your Answer:

For x, y and z, fill in the coordinates of P, and check whether the equation holds. Do the same for Q and R.

3. (a) [3 pt] Method 1: use L'Hôpital

Note that the limit is of type " $\frac{0}{0}$ ", so the use of L'Hôpitals rule is justified.

Calculate the limit using L'Hôpital:

$$\lim_{x \to 0} \frac{x}{\sqrt{x+1} - 1} = \lim_{x \to 0} \frac{1}{\frac{1}{2\sqrt{x+1}} - 0} = \lim_{x \to 0} 2\sqrt{x+1} = 2.$$

Method 2: use the conjugate trick

$$\lim_{x \to 0} \frac{x}{\sqrt{x+1} - 1} = \lim_{x \to 0} \frac{x(\sqrt{x+1} + 1)}{(\sqrt{x+1} - 1)(\sqrt{x+1} + 1)}$$

$$= \lim_{x \to 0} \frac{x(\sqrt{x+1} + 1)}{(\sqrt{x+1})^2 - 1^2}$$

$$= \lim_{x \to 0} \frac{x(\sqrt{x+1} + 1)}{(x+1)^2 - 1^2}$$

$$= \lim_{x \to 0} \frac{x(\sqrt{x+1} + 1)}{(x+1)^2 - 1^2}$$

$$= \lim_{x \to 0} \frac{x(\sqrt{x+1} + 1)}{x}$$

$$= \sqrt{0+1} + 1 = 2.$$

(b) [2 pt] Left and right limit for $x \to 0$ of f must be equal, so we require

$$\lim_{x \to 0^-} f(x) = 2.$$

This gives -p=2, hence p=-2

4. (a) [2 pt] The function f is a polynomial, so the only critical points are values x for which f'(x) = 0. The derivative of f is

$$f'(x) = 3x^2 - 2x - 1.$$

Solving the equation f'(x)=0 gives $x=-\frac{1}{3}$ and x=1, so these are critical points.

(b) [1 pt] Candidates for the extreme values of f on [-2,2] are the boundaries -2 and 2, as well as the critical points found in (a), which are in the interval (-2,2).

$$\begin{array}{c|cc}
x & f(x) \\
-2 & -9 \\
-\frac{1}{3} & \frac{32}{27} \\
1 & 0 \\
2 & 3
\end{array}$$

The absolute minimum is -9, and the absolute maximum is 3, so the correct answer is answer 1.

5. (a) [3 pt] If polar coordinates are used, the calculation would look like this:

$$\lim_{(x,y)\to(0,0)}\frac{x-y}{x^2+y^2}=\lim_{r\to 0^+}\frac{r\cos\theta-r\sin\theta}{r^2} =\lim_{r\to 0^+}\frac{\cos\theta-\sin\theta}{r},$$

which does not exist. So for example if $\theta = 0$ (approach (0,0) along the positive x-axis), then y = 0, hence

$$\lim_{x \to 0^+} \frac{x - 0}{x^2 + 0^2} = \lim_{x \to 0^+} \frac{1}{x} = \infty.$$

(b) [3 pt] The equation for the tangent plane V through (a,b,c) with c=f(a,b) is

$$z = c + \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b). \tag{*}$$

Calculate the partial derivatives of f:

$$\frac{\partial f}{\partial x}(x,y) = \frac{y^2 + 2xy - x^2}{(x^2 + y^2)^2},
\frac{\partial f}{\partial y}(x,y) = \frac{y^2 - 2xy - x^2}{(x^2 + y^2)^2}.$$

Evaluate f and the partial derivatives at (a, b) = (1, -1):

$$c = f(1, -1) = 1,$$

$$\frac{\partial f}{\partial x}(1, -1) = -\frac{1}{2},$$

$$\frac{\partial f}{\partial y}(1, -1) = \frac{1}{2}.$$

Write down the equation of V (fill out all results in (*)):

$$z = 1 - \frac{1}{2}(x - 1) + \frac{1}{2}(y - (-1)),$$

$$z = 2 - \frac{1}{2}x + \frac{1}{2}y.$$

The equation may be rearranged, like

$$2z = 4 - x + y,$$

or:
$$x - y + 2z = 4$$
.

Check Your Answer:

Check whether $x=1,\,y=-1,\,z=1$ satisfies the equation.