Questions

|--|

Surname, First name

Calculus 1A (Ca1A)

Calculus 1A - Sample Test 1 (EN) 9 November 2019 09:00 - 12:00

There are four types of questions: "final answer", "open answer", "multiple choice" and "multiple response".

· Final answer

In the text frame below the question, you only provide *one* answer. Do not write down a calculation, explanation or motivation. If you do write down a calculation, explanation or motivation, it will not be taken into account for grading.

· Open answer

You provide a calculation or motivation in the text frame below the question. The calculation or motivation will be graded. Any text outside the frame will be ignored.

· Multiple choice

Only one answer is correct. Choose and mark the correct answer.

Multiple response

More than one answer may be correct. Choose and mark the correct answer(s).

Exercise 1: Vectors

Define the vectors $\mathbf{u} = \langle -1, 2, 2 \rangle$ and $\mathbf{v} = \langle 4, -3, 0 \rangle$.

1p **1a** Calculate $\mathbf{u} \times \mathbf{v}$.

Provide the answer (and only the answer) in the frame below.

2p **1b** Calculate $\cos \theta$, where θ is the angle between ${\bf u}$ and ${\bf v}$.

Provide the answer (and only the answer) in the frame below.

2p **1c** Calculate the projection of ${\bf u}$ onto ${\bf v}$.

Provide the answer (and only the answer) in the frame below.

Exercise 2: Equation of a Plane

Define the points P(3,2,-1), Q(1,-1,2) and R(2,2,2).

3p **2** Calculate an equation of the plane through P, Q and R.

Provide the answer (and only the answer) in the frame below.

Exercise 3: Limits and continuity

 $\mbox{3p} \quad \mbox{3a} \quad \mbox{Show that } \lim_{x \to 0} \frac{x}{\sqrt{x+1}-1} = 2.$

Give a full calculation/motivation in the frame below.

·	 ·

2p **3b** For which value of p is the following function continuous for every $x \in \mathbb{R}$?

$$f(x) = \begin{cases} 2x - p & \text{if } x \leq 0, \\ \frac{x}{\sqrt{x+1} - 1} & \text{if } x > 0. \end{cases}$$

Provide the answer (and only the answer) in the frame below.

Exercise 4: Extreme Values

Define the function f as follows:

$$f(x) = x^3 - x^2 - x + 1.$$

2p **4a** Calculate the critical points of f.

Give a full calculation/motivation for your answer in the frame below.

4/8

0001	~ 4f
0001	.pui

0035159205

1p **4b** Determine the absolute extreme values of f(x) where $x \in [-2, 2]$.

This a multiple choice question; only one answer is correct.

- O Absolute minimum is -9, absolute maximum is 3.
- O Absolute minimum is -2, absolute maximum is 2.
- O Absolute minimum is -9, absolute maximum is $\frac{32}{27}$.
- O Absolute minimum is 0, absolute maximum is $\frac{32}{27}$.
- O Absolute minimum is $\frac{32}{27}$, absolute maximum is 3.
- O Absolute minimum is $-\frac{1}{3}$, absolute maximum doesn't exist.
- O Absolute minimum is $-\frac{1}{3}$, absolute maximum is $\frac{32}{27}$.
- O Absolute minimum is $-\frac{32}{27}$, absolute maximum is 3.

Exercise 5: Functions of Two Variables

Define $f(x,y)=\dfrac{x-y}{x^2+y^2}$ for all $(x,y)\neq (0,0).$

3p **5a** Calculate $\lim_{(x,y)\to(0,0)}f(x,y)$ if this limit exists, or prove that this limit does not exist.

Give a full calculation/motivation for your answer in the frame below.

0001.pdf 0035159207

3p **5b** Define a=1 and b=-1. Let c=f(a,b). Calculate an equation for the tangent plane V to the graph of f at the point (a,b,c).

Give a full calculation/motivation for your answer in the frame below.

7/8

0001.pdf

0035159208

This page is left blank intentionally