i
/

e

-

Exam Software Engineering Techniques

01-07-2024

o This exam is closed book. Hence, you cannot use any copies of slides, nor
your own notes. Also you cannot use calculators or any other devices.

e This exam consists of 4 exercises, each consisting of several questions.
Clearly indicate which question you answer.

1 Testing (10 points)

Suppose that you have a partial software implementation of the El Dorado game.
You just finished your first implementation of the Hand cards of a Player, the
Market Board, and that a Player can buy a card from the Market Board.

In Figure 1 some of the implementation’s classes with the headers of some of

its methods and constructors are shown. Above each method a short description
of its functionality is given in comments.

class MarketBooard {

}

// Constructor for initializing board with cards at start of game
MarketBoard ()

// Iterate over all cards available for buying in the market
Iterator <Card> availableCardslterator ()

// Removes card from market
removeCard (Card card)

class HandCards {

}

// Constructor for initializing hand with random cards at start of game
HandCards ()

// Constructor for initializing hand with t Traveler cards (each worth 1 gold)
// and random other cards at start of game
HandCards (int t)

// Removes gold cards and returns true if amount of gold is in hand
// returns false otherwise
boolean spendGold (int amount)

class Card {

}

//Creates a card with given mname, power, color, and price
Card(String name, int power, Color color, int Price)

// Returns price of the card in gold
int getPrice ();

class Player {

// Initializes player with hand
Player (HandCards hand)

// Returns the total amount of gold present in the hand
int goldInHand ()

// Calls HandCards.spendGold MarketBoard. removeCard to buy card from market
// Returns true if hand has enough gold and false otherwise
boolean buy(Card card, MarketBoard market)

Figure 1: This figure shows some El Dorado classes with the headers of some of
its methods and constructors. Above each method/constructor a short descrip-
tion of its functionality is given in comments.

Now you want to write an integration test for buying a card with hand cards
from the market board. It should be checked that the gold spend from the hand
of the Player is the same as the cost of the card from the market board.

*(a) To implement the integration test, (3pts)

(1) which classes should to be replaced by stubs? Shortly motivate your
answer.

(ii) which classes should be replaced by drivers? Shortly motivate your
answer.

(iil) which classes should be used in the integration test as-is, i.e. with
their actual implementation? Shortly motivate your answer.

(b) Write the code for the integration test, using methods/constructors of
Figure 1, and any methods/constructors for stubs or drivers that you
need to introduce. If you include a line of code with a call to a stub or
driver method/constructor, you need to include a comment line above that
describes what that line of code achieves. (7pts)

2 Design patterns (12 points)

Suppose that you have implemented a Board class, consisting of the terrain tiles,
terrain strips, end tile, and blockades. You now need to add the caves, such that
a game can be player with caves on the board, but also without the caves. You
want to use a design pattern to obtain the following flexibility: other classes
should deal with the Board class in a uniform way, no matter whether it has
caves or not. The current implementation, that always has caves, is displayed
as a class diagram in Figure 2. Other classes deal with the Board class through
its attributes and its method getTerrainHexagon.

Board

Terrain +List<TerrainTile> terrainTiles
+List<TerrainStrip> terrainStrips
+EndTile endTile

+List«Blockade» blockade
+List<Cave> caves

l | | +Terrain getTerrainHexagon{Position p

Landscape | | Rubble BaseCamp| [Cave

(a)

(b)

Figure 2: Class diagram of current implementation

‘What design pattern would you apply to get the required flexibility for
the Board class? Choose the most appropriate pattern out of the patterns
from the lectures, i.e. Ohserver pattern, Compesite=pattern, Strategy
pattern, Abstract-Factory-patteen, Factory-Methodpattern, Decorator
pattern, Template-Method-pattern, Adapter pattern.

Motivate your choice! (2pts)

Draw a class diagram for your implementation of the design pattern. Only
include classes involved in the design pattern. (Tpts)

Motivate how the diagram of (b) implements your selected design pattern
of (a) by drawing the class diagram of the general pattern, and stating
which classes of the general diagram match with those of your diagram of

(b). (3pts)

3 Software metrics and refactoring (10 points)

Suppose you implemented a class GameController corresponding to the class

diagram of Figure 3.

GameController

-Board board

-MarketBoard market

+vold initializeGamel)
+boolean gameHasWinner()
+void doMove(Card ¢, Player p,int pawnInd)
+void updateMarket(Card boughtCard)

+void placeCardsOnEmptyMarketSpotiint pilelnd
+void runGame()

Figure 3: Class diagram of class GameController

(a) What maintainability guideline is violated? Shortly motivate your answer.

(b) Explain how you would refactor this class.

(3pts)
(6pts)

(c) Name the first refactoring step that you would apply towards achieving
the refactoring you describe at (b).

(1pt)

4 Debugging (10 points)

Figure 4 shows how the spendGold method of the HandCards class from Figure 1
was implemented.

O 00~ O U W

10
11
12

13

14

15

16

17
18}

boolean spendGold(int amount) {

List <Card> cardsToRemove = new ArrayList <>();
while (amount > 0) {

Card ¢ = selectHighestGoldHandCard ();
if (¢ !'= null) { // gold in hand
cardsToRemove.add(c);
amount = amount — c.getPower ();
} else { // no gold in hand
break;

}

if (amount <= 0) { //spend cards

}
}

(a)

(b)

removeCards (cardsToRemove) ;

return true;

else { // not enough gold, keep cards
return false;

What is the forward slice of the statement on line 2?7 Give the line num-
bers. (2pts)

What is the backward slice of the statement on line 147 Give the line
numbers. (2pts)

After running some tests on the spendGold method, it turns out the
method never returns false for any hand containing at least one gold card.
Formulate the first two hypotheses for applying the scientific method to
debug this issue. The first hypothesis should state the expected behaviour,
before any test was run. The second hypothesis should give a clue on how
to solve the bug, from the knowledge after running a test for the first
hypothesis. Give the scientific method tables for both hypotheses. (6pts)

