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The following are example questions (and answers) for the PET-bootcamp
exam. Do note these questions only cover a subset of the material of the course.
The actual exam will cover more topics.

1 Differential Privacy

Recall that a mapping M : X → Y is ε-differentially private if for all output
subsets S ⊆ Y and pairs of neighboring databasesD,D′ ∈ X where dH(D,D′) =
1 it holds that

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] . (1)

Suppose now that the output set Y is finite. Then, prove that the following
alternative definition is equivalent to the standard ε-differential privacy defi-
nition given above: for all output elements y ∈ Y and pairs of neighboring
databases D,D′ ∈ X where dH(D,D′) = 1 it holds that

Pr[M(D) = y] ≤ eεPr[M(D′) = y] . (2)

To prove equivalence, you need to prove first that the standard definition
implies the alternative one, and then that alternative definition implies the
standard one.

Answer. Obviously, the standard definition implies the alternative one: if
Inequality (1) holds for all subsets S ⊆ Y, then it also holds for singleton
subsets of the form S = {y}, for all y ∈ Y.

For the opposite direction, suppose that Inequality (2) holds for all neigh-
boring datasets D,D′ ∈ X . Since Y is finite, for all subsets S ⊆ Y it holds
that:

Pr[M(D) ∈ S] =
∑
s∈S

Pr[M(D) = s] . (3)

By applying Inequality (2), from (3) it follows that:
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Pr[M(D) ∈ S] =
∑
s∈S

Pr[M(D) = s] ≤
∑
s∈S

eεPr[M(D′) = s] . (4)

But now, the right hand side of Inequality (4) can be rewritten as:

∑
s∈S

eεPr[M(D′) = s] = eε
∑
s∈S

Pr[M(D′) = s] = eεPr[M(D′) ∈ S] . (5)

Therefore, putting together the left hand side of inequality (4) with the right
hand side of equation (5) we obtain:

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] , (6)

which is exactly Inequality (1) arising for the standard definition of ε-differential
privacy.

2 Secret sharing

Suppose we do Shamir secret sharing in Z13 with 3 players and threshold 2.

• The players secretly share secret A through polynomial pA(x) = 4 + 5x.

• The players secretly share secret B through polynomial pA(x) = 7 + 3x.

(a) What is the value of secrets A and B?

(b) What are the shares of the 3 players for secrets A and B?

(c) How can the players securely compute a secret sharing of A + B? In
particular: what do they need to compute and/or communicatie, and
what does the polynomial pA+B look like?

Answer.

(a) The secret is the polynomial evaluated at x = 0, so A = 4 and B = 7.

(b) The share of player i = 1, 2, 3 is the polynomial evaluated at i, so the share
of player 1 is pA(1) = 4+5 = 9; the share of player 2 is pA(2) = 4+5∗2 =
14 = 1 mod 13; the share of player 3 is pA(3) = 4+5∗3 = 19 = 6 mod 13.
The same for B: pB(1) = 7 + 3 = 10; pB(2) = 7 + 3 ∗ 2 = 13 = 0 mod 13;
pB(3) = 7 + 3 ∗ 3 = 16 = 3 mod 13.

(c) The players need to locally add their shares: pA+B(1) = pA(1) + pB(1) =
9+10 = 19 = 6 mod 13; pA+B(2) = pA(2)+pB(2) = 1+0 = 1 ; pA+B(3) =
pA(3) + pB(3) = 6 + 3 = 9.
There is no communication needed for addition. The new polynomial is
pA(x) + pB(x) = 11 + 8x.
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3 Homomorphic Encryption

The textbook RSA cryptosystem is partially homomorphic. Recall for textbook
RSA the encryption algorithm described as follows:
Given the public key (n, e) a message m ∈ Zn is encrypted as follows:

c = me mod n

(a) Explain what partially homomorphic encryption property is. You might
use the RSA cryptosystem described above for your explanation. Highlight
the difference between a fully homomorphic and a partially homomorphic
encryption scheme.

(b) Consider two ciphertexts c1 = me
1 mod n and c2 = me

2 mod n withm1,m2 ∈
Zn. Show with these ciphertexts c1 and c2 that RSA is multiplicative ho-
momorphic.

Answer.

(a) A partially homomorphic encryption scheme supports one type of oper-
ations over ciphertexts without intermediate decryption. In the case of
RSA, we can multiply two ciphertexts, and the decryption of this multi-
plication result is the product of the two underlying plaintexts. A fully
homomorphic encryption scheme does not only support one type of op-
eration over ciphertexts (for example multiplication as for RSA) but at
least two (for example addition as well), such that arbitrary circuits can
be evaluated over ciphertexts without intermediate decryption.

(b) We can see from c1 · c2 mod n = me
1 ·me

2 mod n = (m1 ·m2)
e mod n that

the product of the ciphertexts results in a ciphertext of the underlying
plaintexts. Thus, RSA is multiplicative homomorphic as explained in part
(a).

4 Zero-knowledge proofs

What properties does a of zero-knowledge proof have? Provide a brief explana-
tion of each of the properties.

Answer. Properties

• Completeness If the statement is true, an honest prover will always be
able to convince an honest verifier. This assures the validity of the proof
when the statement is correct.

• Soundness This principle ensures that if the prover is trying to deceive the
verifier with a false statement, they will fail to convince the verifier with
high probability. It’s a measure of the system’s resistance to fraudulent
proofs.
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• Zero-knowledge The verifier learns nothing other than the fact that the
statement is true. The proof does not reveal any other information, in-
cluding any details about how the statement is true.
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