201700080 Information Theory and Statistics 15 April 2025, 8:45-11:45

This test consists of 5 problems for a total of 33 points. All answers need to be justified. Hints can be used without proof. The use of a non-programmable calculator (not a "GR") is allowed. A single-sided A4 cheat sheet is allowed. No additional books or notes may be used.

- 1. Gamma distribution. The gamma distribution with parameters $\theta > 0$ and $k \in \{1, 2, ...\}$ has the following properties:
 - We write $X \sim \text{Gamma}(k, \theta)$ for X that is gamma distributed with parameters k and θ . We have

$$- f(x) = \frac{1}{(k-1)!\theta^k} x^{k-1} e^{-x/\theta},$$

$$- \mathbb{E}[X] = k\theta,$$

$$- \mathbb{E}\left[\frac{1}{X}\right] = \frac{1}{(k-1)\theta},$$

- If X_1, X_2, \ldots, X_n are independent and identically distributed (i.i.d.) random variables with $X_i \sim \operatorname{Gamma}(k, \theta)$, then the sum $\sum_{i=1}^n X_i \sim \operatorname{Gamma}(nk, \theta)$.
- If $X \sim \text{Gamma}(k, \theta)$, then $cX \sim \text{Gamma}(k, c\theta)$ for c > 0.

You receive an independent sample x_1, x_2, \ldots, x_n of values from the random variable $X \sim \text{Gamma}(k, \theta)$, where k is known and θ is unknown. You want to estimate θ using the estimator $\hat{\theta} = \frac{C}{\sum_{i=1}^{n} x_i}$, where C is a constant.

- (a) [3 pt] Find the value of C such that $\hat{\theta}$ is an unbiased estimator of θ .
- (b) [3 pt] Give a lower bound on the variance of $\hat{\theta}$.
- **2.** [5 pt] **Bottleneck.** Let X_1 , X_2 and X_3 be discrete random variables that form a Markov chain $X_1 X_2 X_3$, i.e.,

$$p(x_1, x_2, x_3) = p(x_1)p(x_2|x_1)p(x_3|x_2).$$

Also, $x_1 \in \{1, 2, ..., n\}$, $x_2 \in \{1, 2, ..., k\}$, $x_3 \in \{1, 2, ..., n\}$ and $k \le n$.

Show that the dependence between X_1 and X_3 is limited by the bottleneck by proving that $I(X_1; X_3) \leq \log k$.

P.T.O. (Please turn over)

- 3. Hypothesis test. Consider a binary hypothesis testing problem in which $P_1(X = k) = (1 p_1)^k p_1$ and $P_2(X = k) = (1 p_2)^k p_2$, k = 0, 1, 2, ... We have $p_1 = \frac{1}{2} + a$ and $p_2 = \frac{1}{2} a$, with $0 < a < \frac{1}{2}$. We observe n independent samples $x_1, x_2, ..., x_n$ from the random variable X. (Hint: $\mathbb{E}_{P_1}[X] = (1 p_1)/p_1$ and $\mathbb{E}_{P_2}[X] = (1 p_2)/p_2$.)
 - (a) [2 pt] State an optimal decision rule for choosing between the two distributions based on n observations. There's no need to simplify/compute the decision rule.
 - (b) [3 pt] Show that $||P_1 P_2||_{TV} = 2a$. (Hints:
 - $||P_1 P_2||_{\text{TV}} = \frac{1}{2} \sum_{k=0}^{\infty} |P_1(X = k) P_2(X = k)|,$
 - Split the sum into two parts: k = 0 and $k \ge 1$.
 - $\sum_{k=1}^{\infty} r^k = \frac{r}{1-r}$ for 0 < r < 1.)
 - (c) [1 pt] Give a lower bound on $\alpha + \beta$.
 - (d) [3 pt] Suppose that P_1 is the actual distribution. Compute

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \log \frac{P_1(x_i)}{P_2(x_i)}.$$

4. [5 pt] Sum channel. Find the channel capacity of the following discrete memoryless channel:

where P(Z=0)=P(Z=a)=1/2, with $a \in \mathbb{R}$, and $X \in \{0,1\}$. The channel is defined as Y=X+Z. Give the channel capacity for all possible values of a. (Hint: The erasure channel has capacity $1-\epsilon$, where ϵ is the erasure probability.)

- **5. Shannon-Fano code.** Consider a source with alphabet $\mathcal{X} = \{a, b, c, d, e\}$ and p(a) = 0.3, p(b) = 0.2, p(c) = 0.2, p(d) = 0.15 and p(e) = 0.15. The Shannon-Fano code is a compression algorithm that assigns codewords to symbols in such a way that the length of the codeword of symbol x is $\lceil -\log_2 p(x) \rceil$. We use the notation $\lceil \cdot \rceil$ to denote the ceiling function, which rounds a number up to the nearest integer.
 - (a) [3 pt] Is it possible to construct a prefix code for the source for which the expected codeword length is 2.2? Explain.
 - (b) [2 pt] Construct a (prefix) Shannon-Fano code for the source.
 - (c) [3 pt] Is the expected codeword length of a Shannon-Fano code optimal? If so, explain. If not, construct a better code.