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1.

Consider three lines in R
3:

ℓ1 :







x ∈ R
3 | x =





1
2
1



+ λ





−1
1

−1



 for some λ ∈ R







ℓ2 :







x ∈ R
3 | x =





0
−1
2



+ λ





1
1
0



 for some λ ∈ R







ℓ3 :







x ∈ R
3 | x =





2
0
1



+ λ





0
1
1



 for some λ ∈ R







Verify whether these three lines have a common intersection point and, if so, deter-
mine all these intersection points.

In order to solve this problem we reason as follows: Suppose x ∈ R
3 is a common point

of intersection. Well, in that case x belongs (in particular) to the line ℓ1. From the
definition of ℓ1 above we conclude that there exists a real number, let’s say λ1, such
that we can write

x =





1
2
1



+ λ1





−1
1

−1



 .

Now, since the point x also belongs to the lines ℓ2 and ℓ3, we conclude that there exist
real numbers λ2 and λ3 such that we can write

x =





0
−1
2



+ λ2





1
1
0



 and x =





2
0
1



+ λ3





0
1
1



 .

We now have three different expressions representing the same point x. Equating these
expressions to each other, we obtain the following equations:





1
2
1



+ λ1





−1
1

−1



 =





0
−1
2



+ λ2





1
1
0



 =





2
0
1



+ λ3





0
1
1



 .

To find this point of intersection (if it exists), we need to solve these equations for λ1,
λ2 and λ3.

We first compute intersection points of lines ℓ1 and ℓ2. We focus on the following
equation:





1
2
1



+ λ1





−1
1

−1



 =





0
−1
2



+ λ2





1
1
0







This yields the following linear system:





−1 −1
1 −1

−1 0





(

λ1

λ2

)

=





−1
−3
1





It is easily checked that this has a unique solution λ1 = −1 and λ2 = 2. Therefore the
lines ℓ1 and ℓ2 intersect in exactly one point:





1
2
1



+ λ1





−1
1

−1



 =





2
1
2





Next, we need to check whether this intersection point lies on ℓ3. We find the condition





2
1
2



 =





2
0
1



+ λ3





0
1
1





for some λ3. Solving this equation we find λ3 = 1. Hence our intersection point also
lies on the line ℓ3. Therefore the answer is:





2
1
2





2.

Find all possible α for which the volume of the parallelepiped with vertices (α, 0, 1),
(1,−1, 1), (−1, 1, 2) and (0, 0, 0) is equal to 6.

We should have:
∣

∣

∣

∣

∣

∣

det





α 1 −1
0 −1 1
1 1 2





∣

∣

∣

∣

∣

∣

= 6

This yields:

|−3α| = 6

and we find α = 2 or α = −2.

3.

Consider the matrix

A =





1 0 1
1 2 0
2 1 2





Determine the inverse of the matrix A and the inverse of the matrix AT.



We have:




1 0 1 1 0 0
1 2 0 0 1 0
2 1 2 0 0 1



 ∼





1 0 1 1 0 0
0 2 −1 −1 1 0
0 1 0 −2 0 1





∼





1 0 1 1 0 0
0 1 0 −2 0 1
0 2 −1 −1 1 0





∼





1 0 1 1 0 0
0 1 0 −2 0 1
0 0 −1 3 1 −2





∼





1 0 1 1 0 0
0 1 0 −2 0 1
0 0 1 −3 −1 2





∼





1 0 0 4 1 −2
0 1 0 −2 0 1
0 0 1 −3 −1 2





Therefore:

A−1 =





4 1 −2
−2 0 1
−3 −1 2





Next, we have:

(AT)−1 = (A−1)T =





4 1 −2
−2 0 1
−3 −1 2





T

=





4 −2 −3
1 0 −1

−2 1 2



 .

4.

Consider the matrices

A =









1 2 −1 0
1 1 −1 0

−2 1 1 −1
2 0 −1 1









, R =









1 0 0 1
0 1 0 0
0 0 1 1
0 0 0 0









Given is that R is the row-reduced echelon form of the matrix A. In that case, a
basis for ColA is given by:

a)























1
1

−2
2









,









2
1
1
0









,









−1
−1
1

−1























c)























1
1

−2
2









,









−1
−1
1

−1









,









0
0

−1
1























b)























1
1

−2
2









,









2
1
1
0









,









0
0

−1
1























d)























2
1
1
0









,









−1
−1
1

−1









,









0
0

−1
1























Indicate which of the above four options are correct and which of these options are
wrong.



First, we know that if we select the columns of A which have a pivot in the row-reduced
echelon form, then we are guaranteed to get a bases for ColA. So we can immediately
deduced that option a) will be true. However, we know that bases are not unique, so
we need to consider the other possibilities and decide which ones give a correct basis.

We can see from the row-reduced echelon form that the columns of A are not linearly
independent. Indeed, we can see that NullA can be written as

NullA = Span























1
0
1

−1























.

The vector in the nullspace gives explicitly a dependency in the columns of A, i.e.
a1 + a3 − a4 = 0.

From this dependency we conclude that in order to form a basis for ColA, we only
need two out of the three vectors a1,a3,a4 to form a basis (plus the vector a2, which
is linearly independent from the other columns).

To be more explicit, we can argue as follows: By definition, ColA is spanned by
{a1,a2,a3,a4}. Given the dependency mentioned above, a1 can be expressed in terms
of a3 and a4 and therefore

Span{a1,a2,a3,a4} = Span{a2,a3,a4}

Similarly, a3 can be expressed in terms of a1 and a4, so

Span{a1,a2,a3,a4} = Span{a1,a2,a4}

and expressing a4 can be expressed in terms of a1 and a3 we get

Span{a1,a2,a3,a4} = Span{a1,a2,a3}

This implies that a), b) and d) are true. However, in c) we deleted a2 and according to
R we cannot express a2 in terms of a1, a3 and a4 and therefore c) is false (equivalently,
the vectors a1,a3,a4 are linearly dependent so they do not form a basis).

5.

Given is the matrix A

A =





1 α 0
0 α+ 1 1
0 0 3 − α





where α ∈ R. Determine all α ∈ R for which the matrix A is diagonalizable.

It is easy to verify that

det(λI − A) = (λ − 1)(λ − α − 1)(λ − 3 + α)

and therefore the eigenvalues are 1, α+ 1 and 3 − α.

If we have three distinct eigenvalues then it is known that the matrix is diagonalizable.
This is the case for α 6= 0, 1, 2.



We still need to verify the three cases α = 0, 1, 2. If α = 0, we have:

A =





1 0 0
0 1 1
0 0 3





with eigenvalues 1 and 3. For the matrix to be diagonalizable, we need two independent
eigenvalues associated to the double eigenvalue 1. It is easy to verify

E1(A) = Span











1
0
0



 ,





1
1
0











so we do have two independent eigenvalues associated to the double eigenvalue 1 and
therefore the matrix is diagonalizable.

If α = 1, we have:

A =





1 1 0
0 2 1
0 0 2





with eigenvalues 1 and 2. For the matrix to be diagonalizable, we need two independent
eigenvalues associated to the double eigenvalue 2. It is easy to verify

E2(A) = Span











1
1
0











so we have only one independent eigenvalues associated to the double eigenvalue 2 and
therefore the matrix is not diagonalizable.

If α = 2, we have:

A =





1 2 0
0 3 1
0 0 1





with eigenvalues 1 and 3. For the matrix to be diagonalizable, we need two independent
eigenvalues associated to the double eigenvalue 1. It is easy to verify

E1(A) = Span











1
0
0











so we have only one independent eigenvalues associated to the double eigenvalue 1 and
therefore the matrix is not diagonalizable.

Therefore, the matrix is diagonalizable for all α ∈ R except for α = 1 and α = 2.

6.



S : R2 → R
2 is the linear transformation which takes each point (x1, x2) ∈ R

2 and
rotates it first through 45 degrees (counterclockwise), then mirrors the result on the
line y = x and finally rotates it through 45 degrees (clockwise).
T : R2 → R

2 is the linear transformation which takes each point (x1, x2) ∈ R
2 and

rotates it first through 30 degrees (counterclockwise), then projects the result on the
line y = x and, finally, rotates it through 60 degrees (clockwise).

a) Determine the representation matrix of S.

We have:

(

1
0

)

−→
(

1

2

√
2

1

2

√
2

)

−→
(

1

2

√
2

1

2

√
2

)

−→
(

1
0

)

and

(

0
1

)

−→
(

−1

2

√
2

1

2

√
2

)

−→
(

1

2

√
2

−1

2

√
2

)

−→
(

0
−1

)

Therefore the standard matrix is:
(

1 0
0 −1

)

.

A different approach is to compute the standard matrices for each of the steps defining
the transformation S, and then multiplying them in the correct order. Let S1 denote
the first rotation (counterclockwise), S2 denote the reflection, and S3 denote the second
rotation (clockwise). Then the standard matrices for these linear transformations are:

S1 =

(

1

2

√
2 −1

2

√
2

1

2

√
2 1

2

√
2

)

, S2 =

(

0 1
1 0

)

, S3 =

(

1

2

√
2 1

2

√
2

−1

2

√
2 1

2

√
2

)

.

Multiplying these matrices we get:

S = S3 S2 S1 =

(

1 0
0 −1

)

.

b) Determine whether T is surjective (onto) and/or injective (one-to-one).

We note that T = T3T2T1 is a composition of three linear transformations. The second
one T2 is a projection which is clearly neither one-to-one nor onto. On the other hand
T1 and T3 are, as rotations, obviously invertible. But this implies that T is neither
one-to-one nor onto. For instance.

T2

(

1
−1

)

= 0

yields

T

(

T−1

1

(

1
−1

))

= 0



which shows T is not one-to-one. As a mapping from R
2 to R

2 this yields that T is not
onto either.

The same conclusion can also be reached by thinking about the determinants. The
determinant of

T2 =

(

1

2

1

2

1

2

1

2

)

is cleary zero (from the above expression or from the fact that it is a projection onto
a line). This means that also the determinant of T is zero, and thus T is neither
one-to-one nor onto.

7.

a) Show that if a matrix T has eigenvalue 1 then the matrix T 2 also has an
eigenvalue in 1.

If T has eigenvalue 1 then there exists a vector x 6= 0 such that:

Tx = x

But this implies

T 2x = T (Tx) = Tx = x

and therefore x is also an eigenvector of T 2 with eigenvalues 1 which completes the
proof.

b) Verify whether if a matrix T is such that matrix T 2 has eigenvalue 1 then the
matrix T itself also has an eigenvalue in 1. If this is true prove it; if this is not
true then give a counterexample.

No this is not true. For instance, if

T =

(

−1 0
0 −1

)

then

T 2 =

(

1 0
0 1

)

clearly has eigenvalue 1 but the matrix T has only eigenvalues in −1.

8.

Consider the matrices A and B given by:

A =









1 1 0
0 2 1
1 0 −1

−1 −1 1









, B =





1 1 0 2
2 0 1 1
0 −1 1 −2



 .

It is given that NullA = {0} and ColB = R
3.

a) Determine NullAB



The easiest, and safest way to solve the problem is using some theorey to reason like
this:

Because NullA = {0} we know that ABx = 0 implies Bx = 0. Therefore NullAB =
NullB. We have:

B =





1 1 0 2
2 0 1 1
0 −1 1 −2



 ∼





1 1 0 2
0 −2 1 −3
0 −1 1 −2





∼





1 1 0 2
0 1 −1 2
0 −2 1 −3





∼





1 0 1 0
0 1 −1 2
0 0 −1 1





∼





1 0 0 1
0 1 0 1
0 0 1 −1





We find:

NullAB = NullB = Span









−1
−1
1
1









Of course, it is also possible to explicitly compute AB and work from there. However,
this mehtod is slower, requires more computations, and is much more prone to mistakes!
For the sake of completeness, we show here the product AB and its row-reduced echelon
form:

AB =









3 1 1 3
4 −1 3 0
1 2 −1 4

−3 −2 0 −5









, R =









1 0 0 1
0 1 0 1
0 0 1 −1
0 0 0 0









b) Determine ColAB

Because ColB = R
3, we have that ColAB = ColA. Moreover, since NullA = {0} the

columns of A are independent. We find:

ColAB = ColA = Span























1
0
1

−1









,









1
2
0

−1









,









0
1

−1
1

























9.

Given are two bases of R3:

S =











1
0
1



 ,





0
1
1



 ,





−1
1
1











and T =











2
0
1



 ,





1
1
1



 ,





0
2
2











For a vector x ∈ R
3 it is given that

[x]
S
=





1
−1
1



 .

Determine [x]
T
.

Given [x]S , we can compute x:

x =





1
0
1



−





0
1
1



+





−1
1
1



 =





0
0
1





Next we have to express x in terms of the basis vectors of T :





0
0
1



 = t1





2
0
1



+ t2





1
1
1



+ t3





0
2
2



 =





2 1 0
0 1 2
1 1 2









t1
t2
t3





This yields

[x]
T
=





t1
t2
t3



 =





1
−2
1






