Kenmerk: EWI2014/dmmp/026/BM

Exam Limits to Computing (201300042)

Thursday, October 30, 2014, 8:45 - 11:45

- Use of calculators, mobile phones, etc. is not allowed!
- This exam consists of four problems. Please start a new page for every problem.
- Total number of points: 45 + 5 = 50. In addition, Exercise 1d gives 5 bonus points. The distribution of points is according to the following table.

1a: 3	2:8	3a: 4	4a: 2
1b: 5		3b: 9	4b: 2
1c: 6			4c: 2
1d: 6*			4d: 2
			4e: 2

1. Decidability and Recursive Enumerability

Consider the following problem:

$$\mathsf{NEVERACCEPT} = ig\{ R(M) \mid \mathsf{for\ all\ strings}\ x \in \{0,1\}^\star,$$

M does not halt on input x or M rejects x.

- (a) (3 points) Is NEVERACCEPT decidable or undecidable? Prove your answer.
- (b) (5 points) Is NeverAccept recursively enumerable? Is $\overline{\text{NeverAccept}}$ recursively enumerable? Prove your answer.

Now we consider the following problem:

ALWAYSHALT =
$$\{R(M) \mid R(M) \text{ halts on every input } x \in \{0,1\}^*\}.$$

- (c) (6 points) Prove that ALWAYSHALT is not recursively enumerable.
- (d*) (6 bonus points) Prove that ALWAYSHALT is not recursively enumerable.

2. NP-Completeness

Let G = (V, E) be an undirected graph, and let $U \subseteq V$ be a subset of the vertices.

- We call U a *clique* if $\{u,v\} \in E$ for all $u,v \in U$.
- We call U an independent set if $\{u,v\} \notin E$ for all $u,v \in U$.

We consider the following two problems:

$$\mathsf{CLIQUE} = \big\{ (G,k) \mid G \text{ contains a clique of size } k \big\} \text{ and }$$

$$\mathsf{INDEPENDENTSET} = \big\{ (G,k) \mid G \text{ contains an independent set of size } k \big\}.$$

(8 points) Prove that INDEPENDENTSET is \mathcal{NP} -complete. (Note that we have proved in the lecture that CLIQUE is \mathcal{NP} -complete.)

3. Equality of Complexity Classes

(a) (4 points) The class \mathcal{PSPACE} is known from the lecture:

$$\mathcal{PSPACE} = \bigcup_{c>1} \mathsf{DSpace}(n^c).$$

The class $\mathcal{NPSPACE}$ is less famous and defined as follows:

$$\mathcal{NPSPACE} = \bigcup_{c>1} \mathsf{NSpace}(n^c).$$

Prove that $\mathcal{PSPACE} = \mathcal{NPSPACE}$.

(b) (9 points) Prove that $\mathcal{NP} = \mathcal{EXP}$ implies $\mathcal{NEXP} = \mathcal{EEXP}$, where

$$\begin{split} \mathcal{E}\mathcal{X}\mathcal{P} &= \bigcup_{c>0} \mathsf{DTime}\left(2^{n^c}\right),\\ \mathcal{N}\mathcal{E}\mathcal{X}\mathcal{P} &= \bigcup_{c>0} \mathsf{NTime}\left(2^{n^c}\right), \text{ and}\\ \mathcal{E}\mathcal{E}\mathcal{X}\mathcal{P} &= \bigcup_{c>0} \mathsf{DTime}\left(2^{2^{n^c}}\right), \end{split}$$

4. Questions

Are the following statements true or false? Give a short justification of your answer.

- (a) (2 points) For every time-constructable function t, there exists a language L with the following properties:
 - $L \in \mathsf{DTime}(2^{t(n)})$ and
 - $L \notin \mathsf{DSpace}(t(n))$.
- (b) (2 points) co- $\mathcal{NP}\cup\mathcal{NP}\subseteq\mathcal{P}^{\mathsf{CLIQUE}}$
- (c) (2 points) Let A and B be any two decision problems. If A is not decidable and $A \cap B = \emptyset$, then B is decidable.
- (d) (2 points) If $\mathcal{NP} \subseteq \mathsf{DSpace}(n^2)$, then $\mathcal{NP} \neq \mathcal{PSPACE}$.
- (e) (2 points) Palindrome = $\left\{x \in \{0,1\}^n \mid x = x^{\mathrm{rev}}\right\} \in \mathcal{NC}^1$.