Functional Programming

Month dd, 20yy
13:45 - 16:45

e You may use any published book on Haskell, the module guide and
lecture slides. This material should not contain any notes.

e The last page of the exam contains a reference with some definitions.

e Calculators, laptops, mobile phones, etc. are not allowed.
Please put those in your bag now (switched off)!

e You may use predefined Haskell functions and operators from
the packages Prelude, Data.List, Data.Char, Data.Maybe,
Data.Either, System.IO, Control.Applicative, Data.Monoid.

e Style and elegancy also play a role in the grading, e.g., do not use
unnecessary helper functions, counters, etc.

e Write your answers on this paper, in the provided

e Hand in this complete exam with your student number and
name (also when no questions are answered).

__ points+10

e Total points: 90, grade 0

Your name:
(please underline your family name (i.e., the name on your student card), so
that we know how to sort)

Your student number:

1/9

25 points

Test dd Month yyyy Functional Programming UT/EEMCS

Question 1

1. (5 points) The function lookup receives a key and a list of (key, value)-
pairs. For the given key it provides the value that belongs to the given
key - when the key cannot be found it results in Nothing. Define the
function lookup using recursion and give its type.

lookup :: Eq k => k -> [(k, v)] -> Maybe v
lookup k [] Nothing
lookup k ((k',v):xs) | k == k' Just v

| otherwise = lookup k xs

2. (5 points) The function lefts :: [Either a b] -> [a] givesall the
Left values within a given list. Define the function lefts using list
comprehension.

lefts :: [Either a b] -> [a]
lefts xs = [1 | (Left 1) <- xs]

3. (5 points) The function justs :: [Maybe al] -> Maybe [a] receives
a list of Maybe values, and results in Nothing when one or more of these
values is Nothing, otherwise it produces the list of values. Define the
function justs by combining recursion and the applicative style.

justs :: [Maybe al] -> Maybe [al
justs [] = pure []
justs (x:xs) = (:) <$> x <*> justs xs

2 (of 9)

30 points

Test dd Month yyyy Functional Programming UT/EEMCS

4. (5 points) The function first :: [Maybe al -> Maybe a receives a

list of Maybe values, and gives the first Just value and it otherwise
results in Nothing. Define first using foldl.

first :: [Maybe al] -> Maybe a
first xs
= foldl (\x y -> if (isJust x)
then x
else y)
Nothing xs
. (5 points) The I0 action range :: I0 [Int] results in a sequence of

the following IO actions:

(a) Tt prints “First value?” to the standard output (i.e., console).
(b) Tt reads an Int from the standard input (i.e., the console).

(c) It prints “Second value?” to the standard output (i.e., console).
(d) It reads a second Int from the standard input (i.e., the console).

It results in a list of Ints starting with the first given value, up to (and
including) the second value. For example:

*Main> range
First value?
2

Second value?
4

[2,3,4]

Use the applicative style to define range :: I0 [Int].

range :: 10 [Int]

range = (\x y -> [read x .. read y])
<$> (putStrLn "First value?” *> getLine)
<*> (putStrLn "Second value?" %> getLine)

Question 2

A QuadTree is a tree wherein leafs contain the data, and internal nodes have
exactly four children. It it ofted used to store image data by (recursively)
splitting a matrix of values into four block matrices of equal size (we only
consider the simple variant) and storing each of the four block matrices
within a QuadTree node. Single values are stored within leafs. See Fig. 1
for an example.

For simplicity, we assume that all matrices are square matrices with dimen-
sions that are a power of 2 (i.e., 1x1, 2x2, 4x4, 16x16, etc.)

3 (of 9)

Test dd Month yyyy Functional Programming UT/EEMCS

A
A0 D e A

(a) Figure b) Corresponding QuadTree

Figure 1: Example of a QuadTree

1. (5 points) The function
splitMatrix :: [[al]l -> ([[all, [[all, [[all, [[al])
receives a matrix (list of lists) and splits the matrix into four new
matrices of equal size. The order of the resulting matrices in the tuple
are: north west, north east, south west, south east.
Define the function splitMatrix using higher order functions and func-
tion application; do not use recursion or list comprehension.

splitMatrix :: [[al]l -> ([[al]l, [[all, [[all, [[alD)

splitMatrix xss = (aw, ne, sw, se)

where
(vl, v2) = splitAt n xss
(nw, ne) = unzip $ map (splitAt n) vi
(sw, se) = unzip $ map (splitAt n) v2
n = length xss “div™ 2

2. (5 points) The following data type describes a range:
data Range a = Range a a deriving (Eq, Show)

When two Ranges r1 and r2 are merged, the result is the smallest range
that includes both r1 and r2. Give a Monoid instance for Range.

Hint: have a look at the class Bounded. In your instance use the class
constraint (Ord a, Bounded a) =>

instance (Ord a, Bounded a) => Monoid (Range a) where
mempty = Range maxBound minBound
(Range a b) “mappend” (Range x y)
= Range (min a x) (max b y)

4 (of 9)

Test dd Month yyyy Functional Programming UT/EEMCS

3. (10 points) The following data type describes a QuadTree:

data QuadTree a = QNode Int (Range a) (QuadTree a)
(QuadTree a)
(QuadTree a)
(QuadTree a)
| QLeaf Int a

Here, a is the type of the values stored inside the tree, Int is size of
the original matrix, and Range a contains the minimum and maximum
value stored in its children.

The function
makeQuadTree :: (Bounded a, Ord a) => [[a]] -> QuadTree a

receives a matrix and uses it to produce a QuadTree a wherein all values
are filled in as described above.

Give a recursive definition of makeQuadTree.

makeQuadTree :: (Bounded a,0rd a) => [[a]l] -> QuadTree a
makeQuadTree [[x]] = QL 1 x
makeQuadTree xss = QN n r ne' nw' se' sw'

where (ne, nw, se, sw) = splitMatrix xss
1

ne' = makeQuadTree ne

nw' = makeQuadTree nw

se' = makeQuadTree se

sw' = makeQuadTree sw

r = getRange ne' <>
getRange nw' <>
getRange se' <>
getRange sw'

n = (length xss) “div™ 2

4. (10 points) The function compress :: QuadTree Int -> QuadTree Int
compresses a QuadTree by replacing a node wherein the Range is ex-
actly a single value (e.g., Range 1 1) by a Leaf in a way to minimize
the size of the QuadTree.

Give a recursive definition of compress.

compress :: QuadTree Int -> QuadTree Int
compress (QL n x) = QL n x
compress (QN n r@(Range 1 h) nw ne sw se)

| 1 == = QL (2%n) 1
| otherwise = QN n r nw' ne' sw' se'
where

(nw', ne', sw',se') = (compress nw, compress ne,
compress Sw, compress se)

5 (of 9)

5 points

5 points

Test dd Month yyyy Functional Programming

UT/EEMCS

Question 3
The following code is incorrect. Explain briefly what the problem is (use one
argument). Give the smallest change that fixes the problem.
data Azx=B{y::x}

instance Functor (A z x) where
fmap f =B . f . y

A Functor instance requires a type constructor with one argument, but
the provided type constructor has zero arguments.

Correct code:

instance Functor (A z) where
fmap £ =B . f . y

Question 4
Consider the following Haskell code:

r :: [Int]
r = [1..]
r an infinite list starting as 1,2,3,....

Provide recursive definition for r :: [Int] that uses zipWith.

[Int]
: zipWith (+) r (repeat 1)

6 (of 9)

Test dd Month yyyy Functional Programming UT/EEMCS

Question 5
25 points In this question you work with tuples with three values inside (triples), of

the type (a,b,c)

1. (5 points) Define a Functor instance for (a,b,c).

instance Functor ((,,) a b) where
fmap £ (a,b,c) = (a,b,f c)

2. (5 points) Prove the following Functor law for your Functor of (a,b,c):

fmap (f . g) == fmap f . fmap g

Note, this is the same as proving:
fmap (f . g) (a,b,c) == (fmap f . fmap g) (a,b,c)
To finish the proof:

(a, b, £ (f.g) ¢)
fmap £ (a,b,g c)
(fmap f . fmap g) (a,b,c)

fmap (f . g) (a,b,c)
(a, b, £ (g c))
fmap f (fmap g (a,b,c)

3. (5 points) Define an Applicative instance for (a,b,c), where you
assume a and b are Monoid instances. Use the Monoid to combine the
values in your definition of Applicative where possible.

instance (Monoid a, Monoid b) => Applicative ((,,) a b) where
pure ¢ = (mempty, mempty, c)
(a, b, £) <> (x, y, z2) = (a<>x, b<>y, fz)

7 (of 9)

Test dd Month yyyy Functional Programming UT/EEMCS

4. (5 points) Prove the following Applicative law:

pure f <*> pure x = pure (f x)

Using your Applicative:

pure f <*> pure x = pure (f x)

(mempty, mempty, f) <*> (mempty, mempty, x)

(mempty <> mempty, mempty <> mempty, f x)

(mempty, mempty, f x) -— mempty is the identity under <>
pure (f x)

5. (5 points) Provide a short but nontrivial example expression that uses
the Applicative style with your applicative functor (use both <$> and
<*>). Also provide the evaluation result of your expression (only the
end result).

x = (x) <$> ("a”, [1], 10) <x> ("b", [2,3], 20)

This evaluates to: ("ab",[1,2,3],200)

8 (of 9)

Test dd Month yyyy Functional Programming UT/EEMCS

Some important types, type classes and functions

data Maybe a = Nothing | Just a
data Either a b = Left a | Right b
class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a —> Bool

class Eq a => 0rd a where

compare :: a -> a —> Ordering
(<) :: a ->a -> Bool

(<=) :: a -> a -> Bool

(>) :: a ->a -> Bool

(>=) :: a -> a -> Bool

max :: a -> a -> a

min :: a -> a -> a

class Bounded a where
minBound :: a -- lowest wvalue a can assume
maxBound :: a -- highest value a can assume

class Monoid a where

mempty :: a
mappend :: a -> a —> a
mconcat :: [a] -> a

class Functor where
fmap :: (2 > Db) >fa->fhb

class Functor f => Applicative where
pure :: a > f a
(<¥>) :: £ (a>Db) >fa->1fhb

putStrLn :: String -> I0 ()

getLine :: I0 String

9 (of 9)

