DEPARTMENT EEMCS
Date: June 5. 2015

Test: Programming Paradigms — Functional Programming

June 12. 2015
13:45 — 16:45

Remarks:

- During this test you may use the syllabus: Functional Programming — an
overview, nothing else.

- You may only use predefined Haskell functions and operators from the pack-
ages Prelude, Data.List. Data.Char.

- Mention the type for every function that you define.

- Judgement: there are three exercises, which all weigh equally in the total
score.

- Style and elegancy also play a role in the judgement, e.g.. do not use unnec-
essary helper functions, counters, etcetera.

- Good luck!

Opgave 1.

a. A polynome of the order n is a function of the form:
f(x) = anz™ + an_12" 1+ -+ a1z + ag

Define a function polynome that calculates a polynome of the order n for
the list of co-efficients [ag, ai, . .., ay]. Define the function polynome in three
different ways: with recursion, with higher order functions, and with list
comprehension.

b. Write a function coins which determines all different ways in which a
certain amount can be made from coins with the values: 1, 2., 5, 10, 20,
50 cents. For example, an amount of 4 cents can be made as follows (each
number indicates the value of a coin):

[1,1.1.1), [1.1.2), [2.2]

Thus, your function should calculate a list of lists such that the total of each
individual list is the given amount. Every combination should be given only
once, the order in which the coins are mentioned is irrelevant (thus the lists
[1,1.2], [1,2,1], [2.1.1] all represent the same combination of coins).




c. (1) Write a function add35 which calculates the sum of all numbers
which are smaller than a given number n, and which are a multitude of 3
and 5. If such a number is both a multitude of 3 and 5, it should only be
counted once.

For example, for n=20 the list of all multitudes (smaller than n) of 3
and/or 5, together with the sum, are:

3+5+6+9+10412+4+15418 =178

(2) Generalise your definition such that it works for an arbitrary set ks of
numbers the multitudes of which (smaller than a given number n) should
be included. Thus, for ks=[3,5, 7] and n=20 the result should be:

3+5+6+7+9+10+12+14+15+18=199
Opgave 2.

a. Define a type Tree for binary trees with an Int at every internal node,
but no information at the leaves.

b. A tree is balanced if the difference in length of the shortest and the
longest branch (a branch is a path from the root to a leaf) is not more than
1. Write a function isBalanced which checks whether a tree of type Tree is
balanced.

c. Two trees are isomorphic if they have the same structure, though the
numbers at corresponding nodes need not be the same.

(1) Write a function isomorphic which checks whether two trees of type
Tree are isomorphic.

(2) Write a function isomorphicPlus which checks whether two trees of
type tree are isomorphic, and which checks whether corresponding numbers
are in a given reation r to each other (for example, whether each number in
tree t1 is twice as big as its corresponding number in tree t9).

d. A tree of type Tree is sorted if (1) all numbers in the tree are different,
and (2) for every node p in the tree it holds that all numbers in the left
subtree at node p are smaller than the number at node p, and all numbers
in the right subtree at p are bigger than the number at p. Write a function
sorted which checks whether a tree is sorted.

e. Write a function addListToTree which inserts a list of numbers to a
sorted tree such that the resulting tree is sorted again. If a number from
the list is already in the tree, this number should be skipped.



Opgave 3.

a. A graph is a set of nodes together with a set of edges. Assume that
there is at most one edge between any pair of nodes, that the edges are
undirected, and there are no weights on the edges.

Define a type Graph for such graphs. You may choose how to represent
nodes, as long as that type belongs to the class Fjq.

b. A path is a sequence of edges such that the end-node of an edge in the
sequence is the same as the start-node of the next edge in the sequence.
Write a function pathEzists which checks whether there exists a path from
node a to node b, i.e.. node a is the start-node of the first edge in the path,
end node b is the end-node of the last edge.

c. A graph is connected when for every pair of nodes a and b in the graph
there exists a path between a and b. Write a function connected which
checks whether a graph is connected.

d. Suppose g is a connected graph. Write a function minimalCut which
finds the minimal number of edges such that after removing these edges from
graph g, the graph will be disconnected.




