Reference: AM2017/DMMP/010/ha

Course : Discrete Mathematics for Computer Science

Date : October 27, 2017 Time : 08.45–09.45 hrs

Motivate all your answers. The use of electronic devices is not allowed.

In this exam: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}.$

1. [6 pt]

Let the sequence of integers a_0, a_1, a_2, \ldots be given by:

$$a_0 = 1$$
, $a_1 = 2$, $a_2 = 7$, and for $n \ge 3$: $a_n = 2a_{n-1} + a_{n-2} + 2a_{n-3}$.

Prove with mathematical induction that for all $n \in \mathbb{N}$, $a_n \leq \left[\frac{8}{3}\right]^n$.

2. [6 pt]

Let A, B and C be sets and let $f:A\to B$ and $g:B\to C$ be functions such that f is onto and $g\circ f$ is one-to-one. Prove that g is one-to-one.

3. [6 pt]

Let $A = \{(x, y) \mid x, y \in \{0, 1, 2\}\}$ and let R be the relation on A given by:

$$(a,b)R(c,d)$$
 if and only if $a+d=b+c$.

Show that R is an equivalence relation on A and determine the partition of A induced by R.

Total: 18 points