Kenmerk: TW2015/DWMP/010/ha

Course: Discrete Mathematics for Computer Science

Date : October 23, 2015 Time : 08.45-09.45 hrs

Motivate all your answers. The use of electronic devices is not allowed.

In this exam: $\mathbb{N} = \{0, 1, 2, 3, ...\}.$

- 1. [6 pt] Let the sequence of numbers a_1, a_2, a_3, \ldots be given by: $a_1 = 3, a_2 = 11$, and for $n \geq 3$: $a_n = 2a_{n-1} + 4a_{n-2}$. Prove with mathematical induction that for all $n \in \mathbb{Z}^+$, $a_n \leq \left\lceil \frac{10}{3} \right\rceil^n$.
- 2. Let A, B and C be sets and let $f: A \to B$ and $g: B \to C$ be functions such that $g \circ f$ is one-to-one.
 - (a) [4 pt] Prove that f is one-to-one.
 - (b) [2 pt] Show with a counterexample that g is not necessarily one-to-one.
- 3. Let $A=\{2,3,8,12,18,24,36,72\},$ $B=\{18,24,36\}$ and let R be the relation on A given by: xRy if and only if y is divisible by x (i.e, y=kx for some $k\in\mathbb{Z}$).

 \mathcal{N} (a) [3 pt] Show that (A, R) is a poset.

Construct a Hasse diagram for (A,R) and determine the least upper bound and greatest lower bound of B, if they exist. Is (A,R) a lattice?

Total: 18 points

(b) [3 pt]