
201300180 Data & Information – Test 4 ANSWERS
17 June 2016, 13:45 – 15:15

Question 1 (Security) (40 points)

a) The code is vulnerable to (reflected) Cross-Site Scripting since user input is reflected back
without sanitization.An attacker could trick a victim into visiting a crafted URL triggering the
XSS in order to execute a malicious script allowing them to for example steal a user’s cookie
and hijack their session.

b) The code is vulnerable to SQL injection since user input to the query is not sanitized nor
parameterized/prepared.
The above can be exploited in multiple ways to log in as admin. Examples are:

• By crafting a query which ignores the password via commenting: e.g. setting the user
field to be

o admin' -- -
• By crafting a completely tautological query: e.g., setting the user field to be

o (anything)' OR 1 = 1 -- -
• …

SQL injection can be prevented by using prepared statements.

c) The approach is insufficiently secure because it stores credential hashes without salting them

thus allowing an attacker to perform a cost-effective Time-Memory Tradeoff (TMTO) attack
(e.g., using Rainbow Tables).
Ideally these credentials should be stored using a memory-hard key derivation function /
password hashing scheme.

d) The function is insecure because it uses a non-cryptographically secure pseudorandom
number generator (PRNG), namely the default Java PRNG which is then seeded with the user
id and timestamp which are known to the attacker (or, in the case of the timestamp, can be
easily bruteforced since we have approximate knowledge of the value with a session being
created at most 24 hours ago), thus violating the secrecy of the PRNG seed.
An attacker can thus trivially obtain the session token for any user (provided they know the
userid) by simply executing the above function with the ID.

201300180 Data & Information – Test 3, 03.06.2015 – page 2

Question 2 (From and to XML) (30 points)

WARNING: The answers below are not complete, i.e., there may be many more correct and almost
correct answers. Furthermore, the assessment is not based on a number of points per sub-question,
but on the level of mastery on a certain number of aspects.

a)

SELECT
 XMLELEMENT(NAME language,
 XMLATTRIBUTES(l.language AS name, COUNT(*) AS count)
) AS xml
FROM language AS l, movie AS m
WHERE l.mid = m.mid
GROUP BY l.language

b)

SELECT
 XMLELEMENT(NAME language,
 XMLATTRIBUTES(l.language AS name, COUNT(*) AS count),
 XMLAGG(
 XMLELEMENT(NAME movie,
 XMLATTRIBUTES(m.year AS year),
 m.name
)
)
) AS xml
FROM language AS l, movie AS m
WHERE l.mid = m.mid
GROUP BY l.language

c) Since there is a ‘*’ inbetween languages and language in the DTD graph as well as between
language and movie, there are 3 tables. name and count can be inlined into language and
year into movie. Every table needs an ID. language and movie need a reference to the
parent.

CREATE TABLE languages(
 id INT PRIMARY KEY,
);

CREATE TABLE language(
 id INT PRIMARY KEY,
 parent INT REFERENCES languages(id),
 name TEXT NOT NULL,
 count TEXT NOT NULL
);

CREATE TABLE movie(
 id INT PRIMARY KEY,
 parent INT REFERENCES language(ID),
 year TEXT NOT NULL
);

201300180 Data & Information – Test 3, 03.06.2015 – page 3

d) Note that text nodes are separate nodes, but that an attribute with its value is one node. You
can also start counting from 0.

pre post level kind name value
1 10 1 elem languages
2 9 2 elem language
3 1 3 attr name Spanish
4 2 3 attr count 2
5 5 3 elem movie
6 3 4 attr year 1999
7 4 4 text Sixth Sense, The
8 8 3 elem movie
9 6 4 attr year 1999

10 7 4 text Todo sobre mi madre

e) The query is //movie[@year=”1999”]/parent::language

SELECT DISTINCT l.pre
FROM edge r, edge m, edge y, edge l
WHERE r.pre = 1 (root)
 AND m.pre > r.pre AND m.post < r.post (descendant)
 AND m.kind = ‘elem’ AND m.name=’movie’
 AND y.pre > m.pre AND y.post < m.post
 AND y.level = m.level+1 (child)
 AND y.kind = ‘attr’ AND y.name = ‘year’
 AND l.pre < m.pre AND l.post > m.post
 AND l.level = m.level-1 (parent)
 AND l.kind = ‘attr’ AND l.name = ‘language’
ORDER BY l.pre

201300180 Data & Information – Test 3, 03.06.2015 – page 4

Question 3 (Information Retrieval & Full-Text search) (30 points)

a) YES. The full text search capabilities are case insensitive and remove punctuation. Also, they
search through all descendants, not just the children.

b) idf(finds) = log (2/2) = log (1) = 0
idf(only) = log (2/1) = log (2) is approximately 0,3.

tf(776,finds) = 1; tf(776,only) = 1
tf(586,finds) = 1; tf(586,only) = 0

Rank(776) = tf(776,finds) * idf(finds) + tf(776,only) * idf(only) = 1*0 + 1*0,3 = 0,3
Rank(586) = tf(586,finds) * idf(finds) + tf(586,only) * idf(only) = 1*0 + 0*0,3 = 0

c) It is a document which should receive a higher rank if the rating is higher. Any factor based
on the rating is correct, for example,

Rank(d,q) = Σt∈q tf(d,t) idf(t) (d.rating / 10)

d) P(finds,586) = 1/22 (one occurrence from 22 words)

e) Most important here is to multiply the probabilities for both search terms.
P(D|T) = P(T|D) P(D) / P(T) … we assume P(D) and P(T) to not influence the ranking

P(D=776 | T=finds,only) = P(D=776 | T=finds) P(D=776 | T=only) = 1/21 * 1/22 = 1/462
P(D=586 | T=finds,only) = P(D=586 | T=finds) P(D=586 | T=only) = 1/21 * 0/22 = 0

f) Since we like to find some movies (= documents) higher than others, it means P(D) is not
assumed uniform anymore and we should incorporate the rating in P(D). In other words, that
our monkeys who are randomly picking movies, are more likely to pick a movie with high
ranking.

	201300180 Data & Information – Test 4 ANSWERS 17 June 2016, 13:45 – 15:15
	Question 1 (Security) (40 points)
	Question 2 (From and to XML) (30 points)
	Question 3 (Information Retrieval & Full-Text search) (30 points)

