
Solutions to the Design Test, 15 December 2016, 8:45–11:45

1. Activity Diagram

Customer Outdoor Holidays Staff System Clock

Make Booking

Make Advance
Payment

Cancel provisional booking

Make Final Payment

Send
Reminder

Send Documentation

[timely
advance

payment] [no advance payment]
[after
10 days]

[final
payment

in time]

[final payment
not in time]

[final
payment

 due]

[paid within 1 week]

[not paid
within
1 week]

[after
 1 week]

[customer wants to cancel]

[OHT
cancels
tour]

[no cancellation]

Request
cancellation

Cancel
booking

[customer wants to cancel] [tour begins]

Give
refund

[refund
due]

[no refund due]

Remarks:

• Please note the roles of the different actors in a cancellation.

Design Test 15.12.2016 – Solutions

2a. Glossary
A possible glossary is the following

Term Description
Participant Customer of Outdoor Holiday Tours, who takes part in a tour
Footprints Indicate the difficulty of a tour, ranging from very easy (1)

to very challenging (7)
Contact person When a booking is made for a small group, there is one

contact person (whose contact details should be known)

The motivation for choosing terms is that they are important or have a special meaning
in the given context. Possible terms, in decreasing order of importance:
• Participant: OHT specifically wants this word;
• Footprints: an idiosyncratic indication of difficulty, specific for OHT;
• Contact person: here specifically for a participant who makes a booking for a small

group;
• Provisional booking: this is implicity defined in the text (as booking without advance

payment);
• Booking, Cancellation: not really different from ordinary use, and not surprising that

substantial parts of the text are concerned with the details of how OHT handles this;
• Outdoor Holiday Tours;
• Hiking tour, Canoe tour: no further definition given in the text (but you could list wich

aspects are relevant for the system);
• Advance payment, Final payment: is used with the standard dictionary meaning;
• Diet: idem.

2b. Use Case Diagram
See the next page for two versions of a use case diagram, each of them fully correct.
Remarks:
• You could have two different use cases for “Make Advance Payment” and “Make Final

Payment”, but you can also combine them into a single use case.
• For “Cancel Provisional Booking” and “Cancel Booking” it is convenient to model them

as different use cases, each with their own actor.
• For the actor of “Make booking”, you can either have “Participant” (where it is

assumed that in case of a small group it’s the contact person among the participants
who makes the booking) or “Contact Person” (where it is assumed that a participant
who makes a booking just for himself also can be called contact person).

• Who the actor is for a payment depends on one’s perspective. If you want to be very
precise, it is probably the bank who makes the payment on behalf of a participant.
In a slightly more abstract view (the diagram you’d want to show to OHT when you
discuss the system design with them), you could say that the participant makes the
payment.

• For “System Clock” you can use a clock symbol (but this notation was not introduced
in the slides and exercises); the actor symbol is fine as well.

 2

Design Test 15.12.2016 – Solutions

Two possible Use Case Diagrams

Make Booking

Participant

Cancel Tour

OHT Staff

Cancel Booking

Give Refund

<<include>>

Give Refund

Cancel Provisional
Booking

<<extend>>

Make Advance
Payment

Tour Booking

Send Reminder
Final Payment

Make Final Payment

System Clock

Make Booking

Contact Person

Cancel Tour

OHT Staff

Cancel Booking

Give Refund

<<include>>

Give Refund

Cancel Provisional
Booking <<extend>>

Tour Booking

Send Reminder
Final Payment

System Clock

Make Payment on
behalf of Participant

Bank

 3

Design Test 15.12.2016 – Solutions

3. Class Diagram

Tour Type
name: String
description: String
footprints: Integer
max_participants: Integer
min_participants: Integer
no_of_days: Integer

Tour
start: Date
price_p_p: Money
cancelled: Boolean

Hiking Tour
max_ascent: integer

Canoe Tour

Canoe Rental
name: String
address: String
tel.no: String
owner: String

Booking
booking_no: String
paid: Money
cancelled: Boolean

Participant
birth_date: Date
diet: String

Contact person
e-mail: String
telephone: String

Tour Guide
SSN: String

Person
name: String
address: String
gender: String

1

*

1

1

*

*

*

*

0..4

booked_by

for_person >

guided_by

< for_tour

*

1

0..1

is_of_type

< rents_to

Remarks:
• “Tour Type” is not mentioned explicitly, but by now you should be aware of the

possible existence of type classes. At various places the text implies that there are
different tours of the same type (e.g. “The same tour is more expensive in the peak
season”)

• It was intended that different tours of a same tour type could have different guides.
However, this was not clear from the text. If you have associated Tour Guide with
Tour Type, that is considered to be correct as well.

• Participants come in two varieties: contact persons and other participants for one
booking. This can be modelled by two subclasses, as shown below. However, the
subclass “Other Particpant” is not necessary, as shown in the diagram above.

Booking
booking_no: String
paid: Money
cancelled: Boolean

Participant
birth_date: Date
diet: String

Contact Person
e-mail: String
telephone: String

1*

*
0..4

booked_by

booked_for Other participant

 4

Design Test 15.12.2016 – Solutions

4. Sequence Diagram

There are two equally valid solutions, shown in the following two diagrams. The
difference is whether the first participant is taken separately or included in the loop.

addParticipant

addBooking

:Tour

new:Participant

Customer

selectTour

createParticipant
loop

opt

[1..5 times]

[only for 1st participant]

opt addDietaryRequirements

addContactDetails

new:Booking
createBooking

confirmBooking

sd make booking

[if needed]

 5

Design Test 15.12.2016 – Solutions

new:Participant

addParticipant

addBooking

:Tour

new:Participant

Customer

selectTour

createParticipant

loop [0..4 times]

opt addDietaryRequirements

new:Booking
createBooking

confirmBooking

sd make booking

addParticipant

createParticipantWithContactDetails

opt addDietaryRequirements

 6

Design Test 15.12.2016 – Solutions

5a (Software Metrics: Coupling)

1. Counting the constructor, there are 4 similar method pairs (the constructor with
each of the getters) and 6 dissimilar ones (the pairs of getters), making for
LCOM = 2

2. Each of the classes now has 2 similar method pairs and 1 similar one, making for
LCOM = 0

5b (Software Metrics: Cyclometric complexity)

1. The flow graphs:

2. The formula #Edges - #Nodes + 2 yields the same result for both cases
 isOrdered1: 8 – 7 + 2 = 3

isOrdered2: 8 – 7 + 2 = 3

3. Conclusion: the methods are equally complex (in terms of cyclomatic complexity)

 7

	Solutions to the Design Test, 15 December 2016, 8:45–11:45
	1. Activity Diagram
	2a. Glossary
	2b. Use Case Diagram
	3. Class Diagram
	4. Sequence Diagram
	5a (Software Metrics: Coupling)
	5b (Software Metrics: Cyclometric complexity)

