
Solutions to the Design Test, 10 December 2015, 8:45–11:45

1. Activity Diagram
System Applicant Admission Office Admission coordinator Adm. Board

Start
application

Edit
application

Submit
application

Delete
application

Check
completeness

Send
message

Send
message

Study
application

Prepare
decision

Take
decision

Finalize
decision

Notify
applicant

Request
clarification

Answer
request

[application
finished]

[application
not finished]

[application
abandoned]

[application
complete]

[application
not complete]

[more documents
needed]

[file
is OK]

[clarification
needed]

[three
weeks
after
 last
edit]

Remarks:
• The above solution has some three-way branches. You can model these as a single

branch with three exits (as above) or as a combination of two binary branches. These
are equivalent

• When the admission office or the admission coordinator sends a message, asking for
additional information, the status of the application is also changed. This is not
represented in the diagram (it would be represented in a state machine), but it is
okay of you explicitly included this.

Design Test Solutions, 10.12.2015

2a. Actor list
Actor Description
Applicant A person who seeks admission to a study program
Admission office(r) (A person working in) the central office of the University that

handles the registration of admission applications
Admission coordinator The person who assists the admission board of the program

to which the applicant seeks admission with preparing and
finalizing decisions

System clock An automatic trigger to delete unfinished applications when
they have not been edited for three weeks

Remarks:
• The actor list should be consistent with the Use Case Diagram. The case description

does not mention the Admission board as an actor (there are no use cases for it), but
it is reasonable to assume that board members at least can read documents, so it is
not wrong to include it in the list.

2b. Use Case Diagram

Admission support system

Applicant

Admission officer

Admission coordinator

Start application

Edit application

Submit application

Submit application

Check completeness

Send message

Study application

Send message

Send message to
applicant

Prepare decision

Finalize decisionNotify applicant

Delete unfinished
application

«extend»

«extend»

«extend»

System clock

add text for
applicant

«include»

Remarks:
• “Submit application” could also be modelled as a separate use case, but even then it

should be an extension to “Edit application”.
• Any icon is OK as a representation for system clock. (There is no example in the

lecture slides and lab exercises.)

 2

Design Test Solutions, 10.12.2015

3. Class Diagram

Applicant
address: String
country: String
passport_no: String

Application
school: String
country: String
diploma_type: String
additional_info: Text
submitted: Date
decided: Date
admission_granted: Boolean

Master’s Application
ba-degree: String
university: String
thesis_abstract: Text

Staff member
employee_no: String
tel.no: String
office: String

Person
name: String
e-mail: String
birth_date: Date

Program
year: String
start_date_1: Date
start_date_2: Date

Program Type
Abbreviation: String
Name: String
is_master: Boolean

Admission Board

Member
start: Date
end: Date

Document
document_name: String
document_content: PDF

3..* *
1

1..*

*

1

1..*

1*1 * or 1..*

*

1

respons-
ible_for

^ is_instance_of

for< by

attachment to

1..*

Admission coord.
start: Date
end: Date

Remarks:
• “Application” could have subclasses “Bachelor’s application” and “Master’s application”

– but the former has no attributes and associations, therefore it can be discarded.

• In some cases different variants of multiplicities are OK. It it necessary that an
applicant is associated with at least one application? Probably yes (implying that the
applicant information is deleted when the application is deleted; probably true but not
mentioned in the text). But it is of marginal significance for the model.
Note that an Admission Board has at least 3 members, reflected in the mulitiplicity
“3..*”. Other multiplicities like “*” are also considered correct.

• The period for which a staff member serves on admission board is a typical case for
an association class (identified by the combination of a staff member and an
admission board).
Similarly, the period for which a staff member is admission coordinator for a program
(type), can be modelled as an association class.
Note that these two classes have exacly the same attributes. The can be merged in to
one class, as shown below. In that case, however, the assocations should have
names, because the assocation class “Period” does not specify the nature of the
association:

 3

Design Test Solutions, 10.12.2015

Staff member
employee_no: String
tel.no: String
office: String

Program Type
Abbreviation: String
Name: String
is_master: Boolean

Admission Board

Period
start: Date
end: Date

3..* *
1

1..*

*

respons-
ible_for

1..*admission
coordinator

member_of

• In the above solutions it is assumed that someone will not serve as admission

coordinator multiple times, for different periods, with breaks in between.
Similar for member of an admission board. However, if you do want to take these
possibilities into account, this can be modelled as follows.

Staff member
employee_no: String
tel.no: String
office: String

Program Type
Abbreviation: String
Name: String
is_master: Boolean

Admission Board
Membership of
Admision Board

start: Date
end: Date

3..**
1

1..*

responsible_for

1..*

member-
ship_of

Period of Admission
Coordination

start: Date
end: Date

*

11

1

< member-
ship_by

1

coodination_of

^ coordinated_by

 4

Design Test Solutions, 10.12.2015

4. Sequence Diagram

:ModifyApplication

Applicant

editField

sd modify application

:Application

editField

showResult

addPDF

addPDF

new:Attachment
createAttachment

alt [edit a field in the application form]

[add a PDF as attachment]

loop [as often as desired]

submitApplication

showResult

showResult

opt

submitApplication

Remarks:
• Instead of alt you could also have two times opt within the loop. What counts is that

these two actions can be done any number of times in any order.

 5

Design Test Solutions, 10.12.2015

5a (Software Metrics: Coupling)

1. a. Both couplings will typically decrease. The affarent coupling decreases because where possible

other classes will now depend only on A instead of on both C1 and C2. The effarent coupling
decreases because the functionality of C1 (and C2) is split with A, and so they both receive part
of the overall efferent coupling.

2. b. If you call the method of another class directly, that class counts towards your efferent

coupling (you depend on that class). On the other hand, if you register as listener to an
observable, you still depend on that class because you call its addObserver method, so the
efferent coupling does not change.
But now the observable calls back one of your methods. Does this increase your afferent
coupling? No, in fact it doesn't, as (due to abstraction, see above) the observable does not know
whose method he is calling; there is therefore no dependency.
In conclusion, use of the observer pattern does not change the coupling.

5b (Software Metrics: Cyclometric complexity)
1. We have seen various methods to compute the cyclometric complexity. All of them to some

degree depend on the flow graph of the method. The flow graphs for the methods above are as
follows:

The while-condition in the first flow graph is split in two to faithfully reflect the
behavior of the (conditional) &&. The complexity can for instance be computed as
#edges - #nodes + 2; this yields
• find1: 9 – 7 + 2 = 4
• find2: 7 – 6 + 2 = 3

 The calculation as #decisions + 1 yields the same outcome.

2. In find1, the while-condition has to recompute whether the previous instance of the loop

went into the then-part of the if-statement. This causes additional complexity.

while

if

find1

while

if

find2

 6

	Solutions to the Design Test, 10 December 2015, 8:45–11:45
	1. Activity Diagram
	2a. Actor list
	2b. Use Case Diagram
	3. Class Diagram
	4. Sequence Diagram
	5a (Software Metrics: Coupling)
	5b (Software Metrics: Cyclometric complexity)

