EXAMINATION

Formal Methods and Tools ‘ code: 192135300
Faculty of EEMCS CONCURRENT & DISTRIBUTED date: 3 February 2012
University of Twente PROGRAMMING time: 13.45-17.15

m This is an ‘open book’ examination. You are allowed to have a copy of [Ben-Ari 2006]
and [TAMP 2008], and a copy of the (unannotated) lecture slides. You are not allowed to
take personal notes and (answers to) previous examinations with you.

a You can earn 70 points with the following 7 questions.

The final mark for Concurrent & Distributed Programming is the sum of the marks ob-
tained for this examination (70 points) and the three take home assignments (30 points).
In addition, you can earn 10 bonus points in question 4 and 7, to make up for lost points
elsewhere,

VEEL SUCCES!

Question 1 (10 points)

Consider the following state diagram that consists of four states. Four atomic propositions are used: a, b, c and d.
Next to each state, the set of the atomic prositions is indicated that hold in that state.

{a,, b} {ai C}

{6 c} {a,d}

You are requested to indicate for each of the following LTL-formulae the set of sates for which these formulae are
valid. Recall that an LTL-formula is valid in a state if and only if /] paths starting in that state satisfy the formula.

a (2ps) CQa

b. (3pts) OCH

c. (2pts) ald

d. {3pts) Cla= (aU(anc)

Examination Concurrent & Distributed Programming — 3 February 2012 2

Question 2 (10 points)

Suppose we have two kinds of vehicles, bike and cars, that keep crossing a bridge. Since the bridge is rather
narrow, only one vehicle can cross it at the same time. Suppose we have the following atomic propositions for a
Bike at our disposal:

m Bike.arrive — indicates that a Bike arrives at the bridge;
m Bike.onbridge — indicates that a Bike has entered the narrow bridge and occupies it;
m Bike.hasleft — indicates that a Bike has left the bridge and continues its journey;

For a Car three similar predicates are defined.
Specify in Linear Temporal Logic the following properties, only using the six atomic predicates above.

a. (2 pts) Mutual exclusion: only one vehicle at a time can be on the bridge.
b. (2 pts} Absence of starvation (for cars): if a car arrives at the bridge, it will be able to proceed.
c. {3 pts) Precedence (of bikes over cars): a bike takes always precedence over a car.

d. (3 pts) Are absence of starvation and precedence compatible, or are these conflicting requirements?
Explain your answer.

Question 3 (10 points)

Consider the following adaptation of Dekker’s algorithm for the critical section algorithm. In this algorithim, the
while-statement is replaced by an if- and an await-statement (13,8).

boolean wantp + false, wantq « false, integer turn + 1
p q
loop forever loop forever

pl: non-critical section ql: non-critical section
p2: wantp « frue ge: wantq « true
p3: i wanig q3: if wanip
pd: ftum=2 q4: ifturn =1
p5: wantp « false qb: wantq <« false
pé: await turn = 1 q6: await turn = 2
p7: wantp «+ true q7: wantq + true
p8: await wantq = false qs: await wantp = false
p9: critical section q9: critical section
p10: wantp + false ql10: wantq « false
pil: turmn <2 qif: turn <1

Question: Does this algorithm still ensure mutual exclusion?

If so, provide a complete set of invariants with which mutual exclusion can be proved; (you are not required to
prove each invariant in detail).

If not, show a concrete trace that violates mutual exlcusion; (indicate which line is executed and the changes to the
program variables).

Examination Concurrent & Distributed Programming — 3 February 2012 3

Question 4 (1045 peints)

a. (10 pts} Consider the following MPI program for three processors, where =, ¥, z are program variables:

Pg P1 ‘ P2
Send(to: P; ,42) Recv(from: Fy ,) Send(to: P, ,27)
Send(io: P; ,43) Recv(from:* , y)

Recv(from: Py, 2)

Which scenarios are possible for this example program? For each scenario, indicate:

m whether it deadlocks, or terminates successfully.
m what are the final value of z,y, 2.

b. (BONUS +5 pts) Safra’s algorithm for termination detection in a ring (as described by Dijkstra) uses a token
with two fields: a global balance count and a status flag. Draw a concrete scenario in which the balance
count can become a negative number.

Question 5 (10 points)

Consider register r with the following operations:

a . W(z) writes valve z into register 7
m r.R(y) reads value y from register r

Assume that the usual consistency properties for registers hold.
Question: Draw histories of at most three processes (A, B, C), using one or more registers, such that certain con-
sistency properties (sequential consistency (SC), quiescently consistency (QC), linearizability (LIN)) are satisfied:

a. (3 pts) Draw a history which is QC, but not SC and not LIN.
b. (3 pts) Draw a history which is SC, but not QC and not LIN.
¢. {4 pts) Draw a history which is SC and QC, but not LIN.

In each case, explain why the properties hold (or do not hold), for example, by marking linearization points.

Examination Concurrent & Distributed Programming — 3 February 2012 4

Question 6 (10 points)

Consider class BoundedStack in Figure 1. It implements a bounded stack of integers, using an array as internal
representation. The implementation has several (different} concurrency errors. Discuss three different errors,
explain why they cause a problem, and what could be done to fix them.

Each error can give three points, and if you correcily identify all three, you get an extra point.

import java.util.concurrent.locks.s;
class BoundedStack {

private int count = 0;

private int max;

private int[] contents = new int[max};
private Lock 1 = new ReentrantLock(};

BoundedStack (int m} {
max = m;

}

int pop() throws EmptyException {

int res;
if (count > 0) {
l.lock(};

res = contents{count--];
l.unlock({);
)
else { throw new EmptyException(); |}
return res;

}

int size(} |
return ccunt;

}

void push(int e) throws FullException {
if (count < max) {

l.1lock();
contents[count++] = e;
l.unlock();

}

else { throw new FullException(); }

}
}

class EmptyException extends Exception {}
clasas FullBxception extends Excepticon {1

Figure 1. BoundedStack implementation

Examination Concurrent & Distributed Programming — 3 February 2012 5

public class ImmutablePoint {

private firmal int x;
private final int y;

IimmutablePoint (int x, int y) {
this.x = x;

thia.y = y;

}

int x{) {
return x;

}

int vy |
return y;

}

Figure 2: Class ImmutablePoint

class Dot {
protected ImmutablePoint loc;

publiec Dot (imnt x, int y) |
loc = new ImmutablePoint (x, y);
}

public synchrenized ImmutablePoint location(} {return loc;}

public synchronized void shiftX(int delta) {
ImmutablePoint cld = location();
loc = new ImmutablePoint {old.x() + delta, old.y(}):

Figure 3: Class Dot

Question 7 (1045 polnts)

Consider classes ImmutablePoint in Figure 2 and Dot in Figure 3.
Class Dot only uses synchronized methods. If the computation to compute the new location is difficult and
time-consuming, this may affect performance.

a. (10 pnts) A possible solution is to limit synchronization to brief intervals, only to access and later update the
state. This is called optimistic update. Methods changing the state then get the form:
(1) get a copy of the current state representation (while holding a lock)
(2) construct a new state representation (without holding any locks)

(3) commit to the new state only if the old state has not changed since

If the 3rd step fails, the whole process starts again.

Question: Adapt the implementation of class Dot to a class Opt imisticDot, supporting this optimistic
update protocol.

b. (BONUS +5 pnts) Rewrite class Dot as a class LockFreeDot that is completely lock free.

