ExAMINATION

Formal Methods and Tools code: 192135300
Faculty of EEMCS CONCURRENT & DISTRIBUTED date: 1 February 2013
University of Twente PROGRAMMING time: 13.45-17.15

m This is an ‘open book’ examination. You are allowed to have a copy of [Ben-Ari 2006]
and [TAMP 2008], and a copy of the (unannotated) lecture slides. You are not allowed to
take personal notes and (answers to) previous examinations with you.

® This exam consists of 5 pages. You can earn 70 points with the following 7 questions.
The final mark for Concurrent & Distributed Programming is the sum of the marks ob-
tained for this examination (70 points) and the three take home assignments (30 points).
In addition, you can earn 10 bonus points in question 3 and 7, to make up for lost points
elsewhere.

VEEL SUCCES!

Question 1 (10 points)

Consider the following state diagram that consists of four states. Three atomic propositions are used: a, b and .
Mext to each state, the set of the atomic prositions is indicated that hold in that state,

{b, ¢}

@ {ad (D

54

You are requested to indicate for each of the following LTL-formulae the ser of stares for which these formulae are
valid. Recall that an LTL-formula is valid in a state if and only if all paths starting in that state satisfy the formula.

a. {(2pts) ale
b. (2pts) = b
e (2pis) OCH
Express the following properties in LTL as well:
d. (2 prs) Whenever a holds, then from some later point in time, ¢ will always hold

e. (2 pts) Whenever a holds, b must have been true at some earlier point in time

Examination Concurrent & Distributed Programming — 1 February 2013 2

Question 2 (10 points)

Below is an algorithm for mutal exclusion as presented by Manna and Pnueli.

Manna-Pnueli Algorithm
integer wantp + 0, wantg « 0 '
P q
loop forever loop forever
non-critical section non-critical section
pi: if wantg = —1 ql: if wantp = =1
then wantp « —1 then wantg + +1
else wantp +— +1 else wantg «— —1
p2: await wantg # wantp | g2 await wantp # —wantq
szt critical section critical section
pa: wantp « 0 q3: wantq « 0

Note that the whole if-then-else statement is considered to be atomic. If the then and else branches were separate
statements, then the algorithm would be incorrect.

a. (3 pis) Which methods can be used to (dis)prove the correciness of the mutual exclusion property of the
algorithm? What are their advantages and disadvantages?

b. (7 pts) Prove the mutual exclusion property of the algorithm,

Question 3 (1045 points)

a. (10 pts) Consider the following MPI program for three processors, where x and y are program variables:

Pg Py P2

ISend(to: Py , 42, hg) IRecy{from:» , x, fi;) Barrier()
Barrier() _ Bamier()_____ — — " ISend(to:P; 43,h3)
Wait{fig) Wait(fig) Wait{ha)

Recv(from: P, y)i

Which scenarios are possible for this example program? For each scenario, indicate:

= whether it deadlocks, or terminates successfully.
m what are the final values of x and 3?

b. (5 BONUS pts) Consider an initial situation, in which a root process (0) has a special value x, and all
workers i € W have their private value y;. Write a parallel algorithm to compute 37, .- (z * y;), using
MPT's collective operations. You don’t have to care about buffer allocation in memory.

Question 4 (10 points)

Safra’s algorithm for termination detection in a ring network uses a token with two fields: a global balance count
and a status flag.

a. (4 pis) Draw a concrete scenario in which the balance count can become a negative number.
b. (3 pis) Explain why the alternative Dijkstra/Scholten algorithm can be used in a more general setting.
¢. (3 pis) Why can Safra’s algorithm be more efficient than Dijkstra/Scholien’s basic algorithm?

Examination Concurrent & Distributed Programming — 1 February 2013

Question 5 (10 points)

Consider register r with the following operations:
o r.W{x) writes value x into register r
e r.R(y) reads value y from register r

Assume that the usual consistency properties for registers hold.

a. (3 pis) Consider the following history.

R 2

Is this history

s quiescently consistent (QC),
e sequentially consistent (SC),
s linearisahle (LIN)?

Motivate your answer.

b. (3 pis) Consider the following history.

.R(6 -R(5
P R L

Is this history

e quiescently consistent (QC),
e sequentially consistent (SC),
¢ linearisable (LIN)?

Motivate your answer.

¢. (4 pis) Draw a history which is 5C and QC, but not LIN,

Examination Concurrent & Distributed Programming — 1 February 2013 4

Question 6 (10 points)

Consider class Hotel in Figure 1. It implements some simple hotel functionality, maintaining an array of rooms
and a list of people waiting to check in. For simplicity, it does not model that guests can check out; you can assume
that a separate thread will take care of this.

import java.util.s;
import java.util.concurrent.locks.s;

class Person |
)

class Hotel extends Thread |

int nr_rooms = 10;

Person [] rooms = new Person [nr_rooms);
List<Person> gqueue = new ArrayList<Person>();
Lock gqueuelLock = naw ReentrantLock();

boelean cccupied(int i) |
return troonqi] !m pnuall);
}

int checkIn(Person p) |
int i = 0;
while (occupied(i}) (i = (i + 1) % nr_rooms;}
rooms[i] = p;
return i;

void enter (Parscon pl} |
queuelock.lock ()
queue ., add (p) ;

gqueuvelock.unlock () ;

/f every desk employee is a thread
publie woid runi) {
while (true) |
if (!queue.isEmpty())
{
queuelock. lock () ;
Person guest = gueue.remove (0);
gqueuelock.unlock () ;
checkIn{guest);

Figure 1: Hotel implementation

a. (6 pts) The implementation has several different (concurrency) errors. Discuss three different errors, explain
why they cause a problem, and what should be done to fix them. Each error is worth 2 points.

b. (4 prs) Write a lock-free implementation of the checkIn method that can be safely used in a concurrent
context. Also describe the changes necessary to the rest of the class.

Examination Concurrent & Distributed Programming — 1 February 2013 5

Question 7 (10 + 5 points)

In this question, you are asked to write some OpenCL kernels. No points will be subtracted for OpenCL syntax
ETTOrS,

a. (3 pis) Write a kernel foo(int* a, int a_size) such that every thread does the following:
o It compares a[tid] with a[tid — 1].

o Il a[tid] is larger than a[tid — 1], a[tid] is added to a[tid — 1].
e This process repeats until no assignments are taking place anymore.

Make sure your kernel is free of data races. You may assume the existence of a function ALLZEROS that
can test whether all values in an array are 0.

b. (5 pts) Write a kernel sum(int® a, int a_size) that computes the sum of all values in input array a in @(log n).
You are allowed to assume that the length of a is a power of 2.

¢. (3 BONUS pis) Provide a loop invariant for your sum kernel.

