EXAMINATION

Formal Methods and Tools code: 213530
Faculty of EEMCS CONCURRENT & DISTRIBUTED date: 14 April 2009
University of Twente PROGRAMMING time: 13.30-17.00

- m This is an ‘open book’ examination, You are allowed to have a copy of [Ben-Ari 2006], a
copy of the slides, and any additional printed papers or tutorials on the subject. You are
not allowed to take personal notes and (answers to) previous examinations with you.

m You can earn 70 points with the following 7 questions,
The final mark for Concurrent & Distributed Programming is the sum of the marks ob-
tained for this examination (70 points) and the three take home assignments (30 points).

VEEL SUCCES!

Question 1 (10 points)

Consider the following state diagram that consists of four states.

fac} {6} {d}

{be}

Four atomic propositions are used: a, b, ¢ and d. Next to each state, the set of the atomic prositions is indicated
that hold in that state.

You are requested to indicate for each of the following LTL-formulae the set of states for which these formulae are
valid. As we are confronted with a non-deterministic state diagram — in the sense that, e.g., from state s1 there
1s a possibility to either move to state s2 or to state s4 — an LTL-formula is valid in a state if and only if all paths
starting in that state satisfy the formula.

2. OQ0a

b. —-aUb

c. ((aUb)vd)=0Ob
d. O-d=DO(aUb)

e. OBVce)=DTevQa)

Examination Concurrent & Distributed Programming — 14 April 2009 2

Question 2 (10 points)

For each natural language property below, give an LTL formula expressing the property. We assume p, g, and 7 to
be atomic propositions. These atomic propositions can be seen as events: ‘event p has happened/occurred’ means
that there has been a state where p was true.

a. After event p has happened, event ¢ will never happen.
b. Event p always precedes q.
¢. Event p occurs at most twice, i.e. there are most two states in the path where p is true.

d. The events p and g come in pairs: after each event p there will be an event g before a new p appears.
Furthermore between each pair of p and ¢, event r never occurs.

e. Property p is true in each ‘odd’ state but false in each ‘even’ state, i.e. p is true in the 1%¢, 3¢, 5t etc, state,
but false in the 274, 4t gth_efc. state.

Question 3 (10 points)

Consider the following critical section algorithm, which is Algorithm 5.4 of [Ben-Ari 2006].

integer gate1 «— 0, gate2 «+ 0
P q
loop forever loop forever
pl: non-critical section al: non-critical section
p2: gatel «—p g2: gatel «q
p3: if gate2 3£ 0 goto p2 g3: if gate2 # 0 goto g2
p4: gate2 —p g4: gate2+q
p5: ifgatel #£p g5: ifgatel #q
pé: if gate2 £ p goto p2 q6: if gate2 # g goto g2
p7. critical section q7: critical section
p8: gate2 —0 q8: gate2+0

Question: Prove or disprove that this algorithm ensures mutual exclusion.

Examination Concurrent & Distributed Programming — 14 April 2009

Question 4 (10 points)

Consider the following algorithm for the Dining Philosophers problem, which uses a monitor, The algorithm is

Algorithm 7.5 of [Ben-Axi 2006].

monitor ForkMonitor
integer array[0..4] fork «— [2, ..., 2]
condition array([0..4] OKtoEat
operation releaseForks(integer i)
fork[i+1] « fork[i+1]+1
fork[i-1] « fork[i-1]+1
if forkfi+1] =2
signalC(OKioEai[i+11])

operation takeForks{integer i)

if fork[i} £ 2
waitC(OKtoEat(i])

fork[i+1] «— forkfi+1]-1

fork[i-1] « forkfi-1]-1

If fork[i-11 =2
signalC(OKtoEat{i-1]}

philosopheri
loop forever
pl: think
p2: takeForks(i)
p3: eat

p4: releaseForks(i)

Question: Proof that the following formula is invariant:

—empty(OKtoEat[i]) = (fork[i] < 2)

Question 5 (10 points)

Consider the following Java program.

class IntVal {
private int val;

public IntVal(int val)} { this.val = val; }
public wvoid set(int val) { this.val = wval; }
public int get(} { return val; }

}

public class TwoThreads {
public static void main{String(] args) {
final IntVal ival = new Intval(l};

Thread tl = new Thread(new Runnable{) {
public veid run{) { int n = ival.get(): ival.set(n+3); }
1

Thread t2 = new Thread(new Runnable() {
public void run(} { int n = ival.get(); ival.set(n+5}; }
);

tl.start(});: t2.start(};
System.out.println{ival.get()};

Examination Concurrent & Distributed Programming — 14 April 2009 4

a. (6 pts.) Model the Java program TwoThreads in PROMELA. Make sure that the PROMELA model can print
the same values as the Java program.

b. (4 pts.) What values can be printed by the Java program (and the PROMELA model)?

Question 6 (10 points)

Consider the following consensus algorithm, which is Algorithm 12.2 from [Ben-Ari 2006}: the Byzantine Gener-
als algorithm.,

planType finalPlan
planType array[generals] plan
planType array[generals, generals] reportedPlan
planType array[generals] majorityPlan
pl: plan{mylD] « chooseAttackOrRetreat

p2: forall other generals G

p3: send(G, mylD, plan[mylID])
p4: forall other generals G
p5: receive(G, plan[G])

p6: for ali other generals G

p7: for all cther generals G’ except G

p8: send(G', myID, G, plan[G])

p9: for all other generals G

p10: for all other generals G’ except G
pii: receive(G, G, reportedPlan[G, G])

p12: for all other generals G
p13: majorityPlan[G] <« majority(plan[G] U reportedPlan[*, G])

pl4: majorityPlan[mylD] « plan[mylD]
p15: finalPlan «— majority(majorityPlan)

Suppose now that there are four generals: X, Y, Z and T. The generals X, Y and Z are loyal generals. General T is
a traitor general. The four generals behave as follows:
m X wants to attack (‘A’),
m Y wants to retreat (‘R’),
= Z wants to attack (‘A’), and
m T tries to obstruct the consensus of X, Y and Z.
T echoes the messages of its neighbours , so:
m T always sends attack (‘A”) messages to X,
m T always sends retreat (‘R’) messages to Y.
s T always sends attack (‘A’) messages to Z.

Question: draw the knowledge trees for general Y and general T.

Examination Concurrent & Distributed Programming — 14 April 2009 5

Question 7 (10 points)

Indicate for each of the statements below whether the statement is true or false. You do not have to motivate your

ANSWeEL.
a.

b.

1

Semaphores are not contained in Java directly, but can be implemented with the primitives that Java offers.

The methods wait and notify of Java’s Object class can only be called within a synchronized block or
within 2 synehronized method.

. Each constructor of a subclass of the Java class Thread must be declared synchronized.

. It is not allowed in Java to call the method run of a Thread directly. Instead, the method start must be

called. This method takes care that the method run is called by the JVM (by callback).

- Java supports sockets as communication mechanism between threads. A disadvantage of sockets is that a

protocol has to be defined for the exchange of messages via the sockets. Javas RMI library is implemented
using sockets.

. RMI is implemented in Java using a library of classes. There are no extra features added to Java to support

RML

- The RMI registry keeps references to both the server object as well as the client objects within an RMI

Client/Server application.

. An atomic block in PROMELA can be implemented in Java using a synchronized block or a synchro-

nized method.

. An assignment statement in PROMELA is always atomic. An assignment statement in Java enclosed in a

synchronized block is always atomic.

. Rendez-vous communication in 2 PROMELA model can be implemented in Java using RMI. Buffered com-

munication in a PROMELA model can be implemented in Java using sockets.

[CDP 2008/2009 kw3 -8 April 2009]

! For each wrong answer, 2 points are subtracted from the maximum of 10 points for this exercise. Consequently, in case you are not sure,
it might be beiter to leave the question open than to answer it.

