
1. (a) The outer while loop runs n times and the inner while loop an
average of n/2 times, each with 2 arithmetic operations. So the
time complexity is Θ(n2).

(b) We apply the Master theorem: a = 8, b = 2, f(n) = n2+4n+1/n,
and E = log a/ log b = 3. Since f(n) ∈ O(nE−ε) for e.g. ε = 1

2 ,
the first case applies, so

W (n) ∈ Θ(nE) so W (n) ∈ Θ(n3)

2. (a) The smallest element in a minheap has index 0. Swap this with
the last element, adapt the length of de heap, and restore the heap
property using heapify; this last step has complexity O(log n).

def delmin(E):

i=E.heapsize-1

E[0]=E[i]

E.heapsize= E.heapsize-1

heapify(E,0)

(b) The node with the biggest element is the root node. For the node
with the smallest element: go left if possible, else go right, until
this is not possible anymore; the node where you end is the node
with the smallest element.

def maxmin(N)

max = N

x = N

children = true

while children

if x.left != null:

x = x.left

else:

if x.right != null:

x = x.right

else:

children = false

min = x

return max, min

3. (a) • Either you do not include integer ai in the sum, then the
possibilty of forming the sum g with the remaining numbers
is given by R(i− 1, g)

1

• or you do include ai in the sum, and now the problem is
whether it is possible to form the sum g − ai with the re-
maining numbers, which is given by R(i− 1, g − ai)

• so R(i, g) is the ”or” of these two possibilities

So the correct option is (ii): R(i, g) = R(i− 1, g)||R(i− 1, g− ai)

(b) The algorithm to fill the boolean matrix R (we use the indices in
a ranging from 1 to n, so we do not use element a[0]):

def subsum(a,G):

n=len(a)-1

R=[[0 for g in range(G+1)] for i in range(n+1)]

for i in range(0,n+1):

R[i,0]=1 #always possible to form sum 0

for i in range(1,n+1):

for g in range(1,G+1):

if (g-a[i])<0:

R[i,g]=R[i-1,g]

else:

R[i,g]=R[i-1,g]||R[i-1,g-a[i]])

return [n,G];

The complexity of this algorithm is Θ(nG).

2

