Exam

Abstract Algebra

(This file has been created from memory by a student, so it may contain errors and it will be incomplete)

April 12, 2024

1 Final answer / multiple choice questions

Question 1. Given are: $\sigma = (2356)$ (cyclic notation) and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 5 & 1 \end{pmatrix}$ (array notation). Find

 $\sigma^{-1}\tau$ and write your answer in array notation.

Question 2. How many abelian groups are there of order 100 up to isomorphism?

Question 3. Given is the homomorphism $GL_2(\mathbf{Z}) \rightarrow U(3)$ such that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \to ad - bc \pmod{3}$$

 $GL_2(\mathbf{Z})$ is the multiplicative group of (2×2) -matrices with entries in \mathbf{Z} and determinant 1 or -1. What is the index of the kernel in $GL_2(\mathbf{Z})$ of this homomorphism?

Question 4. What is the order of ((12)(345), 2) in $S_5 \times \mathbb{Z}_8$?

Question 5. Which elements in D_5 generate the subgroup $\langle r \rangle$?

Question 6. What is the logarithm of (234) with base= (123)(56)(134) in S_6 ?

Question 7. Given are the groups *G*, *H* and *K*. *K* is a subgroup of *H* and *H* is a subgroup of *G* (K < H < G). Which of these statements is always true? Give only one answer.

- (a) The index of H in G is bigger than the index of K in G
- (b) The index of K in H is bigger than the index of H in G
- (c) The index of K in G is bigger than the index of K in H
- (d) The index of K in H is bigger than the index of K in G

Question 8. Given is an abelian group *G*. *H* is a subgroup of *G*. What is true about *H*? Only give one answer.

- (a) *H* is normal
- (b) H is normal if H is cyclic, otherwise not normal
- (c) *H* is normal if *H* has cyclic subgroups, otherwise not normal
- (d) H is normal if H is the trivial subgroup, otherwise not normal

Question 9. In the group with presentation $\langle w, x, y, z | wxy, wx^{-1}, wy^{-1} \rangle$, find a word of shortest length equivalent to $wwwzyxwx^{-1}$

Question 10. Which of the following groups is not isomorphic to U(12)? Only give one answer.

- (a) U(8)
- (b) $U(2) \times U(6)$
- (c) $U(3) \times U(6)$
- (d) $U(4) \times U(6)$

Question 11. Is 2x - 1 in $\mathbb{Z}_4[x]$ a unit, zero divisor, both or neither? Only give one answer.

- (a) 2x 1 is only a unit, not a zero divisor.
- (b) 2x 1 is not a unit, only a zero divisor.
- (c) 2x 1 is a unit and a zero divisor.
- (d) 2x 1 is not a unit, nor a zero divisor.

Question 12. Given are $q(x) = x^3 + x^2 - x - 1$ and $p(x) = 2x^3 + x^2 - 4x + 3$. Are they irreducible in **Z**₅? Only give one answer.

- (a) Only p(x) is irreducible.
- (b) Only q(x) is irreducible.
- (c) Both p(x) and q(x) are irreducible.
- (d) Both p(x) and q(x) are reducible.

Question 13. Given are $p(x) = x^4 - 2x^3 - x^2 - 2x + 1$ and $q(x) = x^3 - 2x^2 - 2x + 2$. What is the monic gcd(p(x), q(x))?

Question 14. Give the lowest integer which is a solution to the following system of congruences:

 $\begin{cases} x \equiv 2 \pmod{5} \\ x \equiv 5 \pmod{11} \end{cases}$

Question 15. Given is the free group F(S) = a, b, c and we define the homomorphism $\varphi : F(S) \rightarrow \mathbb{Z} \times S_5$ in which we have $\varphi(a) = (2, ()), \varphi(b) = (0, (345))$ and $\varphi(c) = (-2, (354))$. Solve: $\varphi(abccb^{-1}c^{-1}aa)$.

2 Questions with explanation

For these questions write down the full calculations.

Question 1. Given is the homomorphism $S_n \times \mathbb{R}^n \to \mathbb{R}^n$. The permutation given by S_n changes the order of \mathbb{R}^n accordingly. This homomorphism is defined as follows:

$$(\sigma, (x_1, x_2, \dots, x_n)) \rightarrow (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \dots, x_{\sigma^{-1}(n)})$$

Example:

 $((123), (7, 10, 11)) \to (11, 7, 10)$

- (a) What are the orbits of (1, 1, 1), (1, 2, 2) and (4, 5, 6)?
- (b) What is the stabilizer set of $(7, \pi, 7, \sqrt{2})$ and (0, 0, 5, 0)?

(c) Describe the fixed point set of this homomorphism. What is in it?

- Question 2. Prove or disprove that $\mathbb{Z}[\sqrt{3}]/I$ is a field. It is given that $2 + \sqrt{3} \in I$. Hint: compute $(2 + \sqrt{3})(2 \sqrt{3})$.
- **Question 3.** Let *G* and *H* be groups, and *H* is a subgroup of *G*. Given is: [G : H] = 2. Prove that for any $g \in G$, then $g^2 \in H$.