(Abstract) Algebra (M7) Q&A for exam – the sample exam

Georg Loho g.loho@utwente.nl

April 11, 2023

Final Answer

Each question is worth 3 points. Only a completely correct answer gains points.

What is the discrete logarithm of (36)(45) with basis (217)(3465) in S_7 ?

6

first approach: multiply
$$(217)(3465)$$
 by itself multi-
we get $(36)(45)$
second approach: both at the length of the yells $3n = 4m+2$
 $(217)(1465)(217)(3465) = (127)(36)(45)$
 $(127)(36)(45)(217)(3465) = (1)(2)(7)(3564)$

What is the word of shortest length equivalent to zxyzxyyx in the group with presentation $\langle x, y, z \mid xx, yz, zz, yy \rangle$?

$$\frac{Z \times}{\text{Alternative: } y \times}$$

$$\frac{Z \times y \times y \times}{Z \times y \times x} \rightarrow \frac{Z \times x \times y \times}{Z \times x \times y \times}$$

$$\frac{Z \times y \times y \times x}{Z \times y \times x} \rightarrow \frac{Z \times x \times y \times x}{Z \times x \times y \times x}$$

$$\frac{Z \times y \times y \times x}{Z \times y \times x} \rightarrow \frac{Z \times x \times y \times x}{Z \times x \times y \times x}$$

$$\frac{Z \times y \times y \times x}{Z \times y \times x} \rightarrow \frac{Z \times x \times y \times x}{Z \times x \times y \times x}$$

$$\frac{Z \times y \times y \times x}{Z \times y \times x} \rightarrow \frac{Z \times x \times y \times x}{Z \times x \times y \times x}$$

$$\frac{Z \times y \times y \times x}{Z \times x \times y \times x} \rightarrow \frac{Z \times x \times y \times x}{Z \times x \times x}$$

$$\frac{Z \times y \times x \times y \times x}{Z \times x \times y \times x} \rightarrow \frac{Z \times x \times x}{Z \times x \times x}$$

$$\frac{Z \times y \times x \times y \times x}{Z \times x \times y \times x} \rightarrow \frac{Z \times x \times x}{Z \times x \times x}$$

$$\frac{Z \times x \times y \times x}{Z \times x \times y \times x} \rightarrow \frac{Z \times x \times x}{Z \times x}$$

$$\frac{Z \times x \times y \times x}{Z \times x \times y \times x} \rightarrow \frac{Z \times x \times x}{Z \times x}$$

$$\frac{Z \times x \times y \times x}{Z \times x \times y \times x} \rightarrow \frac{Z \times x \times x}{Z \times x}$$

$$\frac{Z \times x \times y \times x}{Z \times x \times y \times x} \rightarrow \frac{Z \times x \times x}{Z \times x}$$

$$\frac{Z \times x \times y \times x}{Z \times x \times y \times x} \rightarrow \frac{Z \times x \times x}{Z \times x}$$

$$\frac{Z \times x \times y \times x}{Z \times x} \rightarrow \frac{Z \times x \times x}{Z \times x}$$

$$\frac{Z \times x \times y \times x}{Z \times x} \rightarrow \frac{Z \times x \times x}{Z \times x}$$

$$\frac{Z \times x \times y \times x}{Z \times x} \rightarrow \frac{Z \times x}{Z \times x}$$

$$\frac{Z \times x}{Z \times x} \rightarrow \frac{Z \times x}{Z \times x}$$

$$\frac{Z \times x}{Z \times x} \rightarrow \frac{Z \times x}{Z \times x}$$

$$\frac{Z \times x}{Z \times x} \rightarrow \frac{Z \times x}{Z \times x}$$

$$\frac{Z \times x}{Z \times x} \rightarrow \frac{Z \times x}{Z \times x}$$

$$\frac{Z \times x}{Z \times x} \rightarrow \frac{Z \times x}{Z \times x}$$

$$\frac{Z \times x}{Z \times x} \rightarrow \frac{Z \times x}{Z \times x}$$

List the generators of the cyclic group generated by (1892) in S_9 .

Cyclic group:
$$\begin{cases} \text{orde } 4 & 2 & 4 \\ (1892), (19)(28), (1298), (1) \end{cases}$$

$$\begin{cases} (1892)^k \mid k \in \mathbb{Z} \end{cases}$$
approachs: compute all powers, theorem shout generators of cyclic group, order of permetation is less of cyclic

Let $\mathcal{F}(T)$ be the free group on $T=\{x,y,z\}$, and let G be the subgroup of the direct product $S_4\times\mathbb{Z}_3$ generated by $\{((12),1),((13),1),((1234),2)\}$. Furthermore, we define the group homomorphism $\phi\colon\mathcal{F}(T)\to G$ by setting $\phi(x)=((1),0)$, $\phi(y)=((13),1),\ \phi(z)=((1234),2)$. Which element of $S_4\times\mathbb{Z}_3$ is $\phi(zyxx)$?

What is the inverse of (4,5) in the direct product $\mathbb{Z}_5 \times U(7)$?

Give the smallest non-negative integer which is a solution to the following system of congruences:

$$x \equiv 5 \pmod{11}$$
$$x \equiv 3 \pmod{5}$$

38

approacher:

guessing

Encliden algo (Bezont theorem (1 + (-21.5 =)

Wate x at collision of the other congruence

x = 5z + 3 = 5 = 5 mod (1 =) 5z = 2 mod (1)

What is the index of the kernel of the group homomorphism

$$\psi \colon SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}_2)$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a \pmod{2} & b \pmod{2} \\ c \pmod{2} & d \pmod{2} \end{pmatrix}$$

6

approach:

• find bernel and then its cosch

• observe that V is surjective. So, by (somorphish Theorem,

quotient group is isomorphic to image

She (22)

Mark all valid possibilities for which a field of characteristic 3 exists with this order.

Not selecting all the correct options or also wrong options yields ${\bf 0}$ points for the question.

1																. [
\propto	ο.															.)	<	
9																		
2																•		

if finite: then order is power of characteristic, so

g and 27 is fine
infinite: algebraic closure of Tp (in this case 2/2)

Mixed Multiple Choice

You can get 3 points per question. For each of the statements write 1 for true and 0 for false. If at least one of the three statements is not correctly recognized as true or false or if the answer is missing, then you get $\mathbf{0}$ points for the question.

- There is exactly 1 abelian groups with 9 elements up to
- isomorphism. $\mathbb{Z}_3 \times \mathbb{Z}_3 = \mathbb{Z}_g$ $U(6) \text{ is isomorphic to } U(10). \begin{bmatrix} \{1,5\} \} \\ \{1,5\} \end{bmatrix} < [\{1,3,7,9\}]$
- In a group, each element has a unique inverse.

•
$$2+\sqrt{5}$$
 is an element of $\mathbb{Q}(\sqrt[4]{5})$. $2+\sqrt{5} = 2+(\sqrt{5})^2$

- ② It is possible to construct $\sqrt[3]{5}$ with straightedge and compass.
- There exists a group of order 16 which has a subgroup with 2 elements.

No, because the degree is 3, not a power of 2 Yes, Z16 with subgroup (0,83

- **①** The function mapping all elements to 2 is a zero divisor in the ring of functions $\{f \mid f : \{1,2,3\} \to \mathbb{Z}_3\}$ with component-wise addition and multiplication
- ② There is a ring homomorphism from \mathbb{Z} to \mathbb{Z} whose image is $2\mathbb{Z}$.
- R is algebraically closed.
 At leas in solution.

$$(2) \ \varphi: \ \mathbb{Z} \to \mathbb{Z} \qquad 2 = \overline{\varphi(1)} = \varphi(1) = \varphi(1) = \varphi(1) = 2 \cdot 2 = 4$$

Questions With Explanations

Write the answers on exam paper.

(6 points) Let

$$G = \left\{ \begin{array}{cc} \phi \colon \mathbb{Z}_6 & \to \mathbb{Z}_6 \\ z & \mapsto \alpha z + \beta \end{array} \middle| \alpha \in \{1, 5\}, \beta \in \{0, 3\} \right\}$$

be a subgroup of the group of bijective functions on \mathbb{Z}_6 . Prove or disprove that G is commutative.

Note that the group G acts on \mathbb{Z}_6 . List the orbits of this action. Give the stabilizer subgroup of $3 \in \mathbb{Z}_6$.

Let
$$\alpha, \gamma \in \{1,53\}$$
 and $\beta, \delta \in \{0,33\}$.

Then $\gamma(\alpha z + \beta) + \delta = \gamma \alpha z + \gamma \beta + \delta$ and

 $\alpha(\gamma z + \delta) + \beta = \alpha \gamma z + \alpha \delta + \beta$

are the two composition of the maps given by the pairs (α, β) and (γ, δ) .

We get $\gamma \beta + \delta = \alpha \delta + \beta$ for all possible choices:

We have $\alpha \delta = \delta$ for all $\alpha \in \{1,5\}$ and $\beta \in \{0,3\}$ therefore, the two functions community, the group is communitative.

Stabilizer Subgroup of 3: { = , 5 = }

Chech corrections (at least size) with orbit stratificant theore 2.2 = 4

(5 points)

Let $p(x) = x^4 + x^2 + x + 1 \in \mathbb{Z}_2[x]$. Compute the multiplicative inverse of $h(x) = x^3 + x + 1$ in $\mathbb{Z}_2[x]/\langle p(x) \rangle$ and prove that it is indeed an inverse.

$$\frac{(x^4+x^2+x+1):(x^3+x+1)=x \text{ remaind } 1}{x^4+x^2+x}$$
So we get $x \cdot (x^3+x+1) + x^4+x^2+x+1=1$
Therefore the pick $x+\langle x^4+x^2+x+1\rangle \in \mathbb{Z}_2[x]/\langle p(x)\rangle$
Indeed, $(x^3+x+1+\langle p(x)\rangle)(x+\langle p(x)\rangle)=$

$$x(x^3+x+1)+\langle p(x)\rangle = x^4+x^2+x+1+\langle p(x)\rangle = 1+\langle p(x)\rangle.$$
So it is the inverse.

(5 points)

Consider the ring formed by the set

$$S = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\},$$

a subring of the ring of (2×2) -matrices with entries in \mathbb{Z}_2 . Let $\phi \colon \mathbb{Z}_2[x] \to S$ be the unique ring homomorphism with

$$\phi(1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $\phi(x) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Prove that the kernel of ϕ is not a maximal ideal.

First approach: Realize that the kernel is the ideal $x^2 \mathbb{Z}_2(x)$. This is not maximal because $x^2 \mathbb{Z}_2(x) \subset x \mathbb{Z}_L(x)$. Alkanostively, x^2 is reducible, so $x^2 \mathcal{V}_L(x)$ is not maximal.

Second a poroach: The ring homomorphism is surjective, he converse $S = \Phi(0), \Phi(1), \Phi(1+x), \Phi(x)$. Therefore, by 150 theory, $W_2 = W_3 + W_4 = W_4 + W_5 = W_5 + W_6 = W_6 =$

(5 points)

Determine the unique monic generator of the smallest ideal I of $\mathbb{Q}[x]$ that contains $p(x) = -x^2 + 2x + 3$ and $q(x) = -x^2 + x + 6$, namely $I = \{p(x)a(x) + q(x)b(x) \mid a(x), b(x) \in \mathbb{Q}[x]\}$, with the Euclidean algorithm.

$$\frac{\left(-x^{2}+2x+3\right):\left(-x^{2}+x+6\right)=1}{-x^{2}+x+6}$$

$$\frac{\left(-x^{2}+x+6\right):\left(-x^{2}+x+6\right):\left(x-3\right)=-x-2}{x-3}$$
The required general
$$\frac{-x^{2}+3x}{-2x+6}$$
is the gcd, which is

just x-3 by the computation.