Course Algebra M7 Name: Sample EXAM Date Time 2.5 h Student number: The use of electronic devices is not allowed. The total number of points is 54. The grade for x points is $\frac{x+6}{6}$ rounded. **Final Answer** Each question is worth 3 points. Only a completely correct answer gains points. 1. What is the discrete logarithm of (36)(45) with basis (217)(3465) in S_7 ? 2. What is the word of shortest length equivalent to zxyzxyyx in the group with presentation $\langle x, y, z \mid xx, yz, zz, yy \rangle$? 3. List the generators of the cyclic group generated by (1892) in S_9 . 4. Let $\mathcal{F}(T)$ be the free group on $T = \{x, y, z\}$, and let G be the subgroup of the direct product $S_4 \times \mathbb{Z}_3$ generated by $\{((12), 1), ((13), 1), ((1234), 2)\}$. Furthermore, we define the group homomorphism $\phi \colon \mathcal{F}(T) \to G$ by setting $\phi(x) = ((1),0), \ \phi(y) = ((13),1),$ $\phi(z) = ((1\,2\,3\,4), 2)$. Which element of $S_4 \times \mathbb{Z}_3$ is $\phi(zyxx)$? 5. What is the inverse of (4,5) in the direct product $\mathbb{Z}_5 \times U(7)$?

6.	${\sf Give}$	the	smallest	non-negative	integer	which	is	a	${\sf solution}$	to	the	following	system	of
	cong	ruen	ces:											

$$x \equiv 5 \pmod{11}$$
$$x \equiv 3 \pmod{5}$$

$$\psi \colon SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}_2)$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a \pmod{2} & b \pmod{2} \\ c \pmod{2} & d \pmod{2} \end{pmatrix}$$

8. Mark all valid possibilities for which a field of characteristic 3 exists with this order.

Not selecting all the correct options or also wrong options yields **0** points for the question.

1	
∞	
9	
27	

Mixed Multiple Choice

You can get 3 points per question. For each of the statements write 1 for true and 0 for false. If at least one of the three statements is not correctly recognized as true or false or if the answer is missing, then you get $\mathbf{0}$ points for the question.

is miss	sing, then you get $\bf{0}$ points for the question.
1.	(a) There is exaclty 1 abelian groups with 9 elements up to isomorphism.
	(b) $U(6)$ is isomorphic to $U(10)$.
	(c) In a group, each element has a unique inverse.
	(a)
	(b)
	(c)
2.	(a) $2+\sqrt{5}$ is an element of $\mathbb{Q}(\sqrt[4]{5})$.
	(b) It is possible to construct $\sqrt[3]{5}$ with straightedge and compass.
	(c) There exists a group of order 16 which has a subgroup with 2 elements.
	(a)
	(b)
	(c)
2	
3.	(a) The function mapping all elements to 2 is a zero divisor in the ring of functions $\{f \mid f \colon \{1,2,3\} \to \mathbb{Z}_3\}$ with component-wise addition and multiplication
	(b) There is a ring homomorphism from $\mathbb Z$ to $\mathbb Z$ whose image is $2\mathbb Z$.
	(c) \mathbb{R} is algebraically closed.
	(a)
	(b)
	(c)

Questions With Explanations

Write the answers on exam paper.

1. (6 points)

Let

$$G = \left\{ \begin{array}{cc} \phi \colon \mathbb{Z}_6 & \to \mathbb{Z}_6 \\ z & \mapsto \alpha z + \beta \end{array} \middle| \alpha \in \{1, 5\}, \beta \in \{0, 3\} \right\}$$

be a subgroup of the group of bijective functions on \mathbb{Z}_6 . Prove or disprove that G is commutative.

Note that the group G acts on \mathbb{Z}_6 . List the orbits of this action. Give the stabilizer subgroup of $3 \in \mathbb{Z}_6$.

2. (5 points)

Let $p(x) = x^4 + x^2 + x + 1 \in \mathbb{Z}_2[x]$. Compute the multiplicative inverse of $h(x) = x^3 + x + 1$ in $\mathbb{Z}_2[x]/\langle p(x) \rangle$ and prove that it is indeed an inverse.

3. (5 points)

Consider the ring formed by the set

$$S = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\},\,$$

a subring of the ring of (2×2) -matrices with entries in \mathbb{Z}_2 .

Let $\phi \colon \mathbb{Z}_2[x] \to S$ be the unique ring homomorphism with

$$\phi(1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } \phi(x) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Prove that the kernel of ϕ is not a maximal ideal.

4. (5 points)

Determine the unique monic generator of the smallest ideal I of $\mathbb{Q}[x]$ that contains $p(x) = -x^2 + 2x + 3$ and $q(x) = -x^2 + x + 6$, namely $I = \{p(x)a(x) + q(x)b(x) \mid a(x), b(x) \in \mathbb{Q}[x]\}$, with the Euclidean algorithm.