
1. (a) This is actually selection sort. The outer loop iterates n times,
the inner loop on average n/2 times, with one comparison in the
inner loop, so asymptotic compexity Θ(n2). It is an in–place
sorting algorithm.

(b) Use the Master Theorem, with a = 4 and b = 2, so E = log4/log2 =
2.

• clearly, cases 1 and 2 do not apply since E = 2

• since f(n) = n3 ∈ Ω(n2+ε) for ε = 1, case 3 might apply

• and as 4(n/2)3 = 1/2n3 ≤ cf(n) for c = 1/2, case 3 applies:
T (n) ∈ Θ(n3)

2. (a) Changing item E[k] into K might cause two possible problems in
the heap:

• K might be bigger than the value for the parent of k: then
K needs to be swapped upwards until this is no longer the
case

• K might be bigger than the value for the child of k: this can
be solved by calling Heapify.

def update(E,K,k): # assume k<len(E), K not in E

if E[k] < K : # K possibly bigger than parent of k

E[k] = K

parent = (k-1)//2

heap = (parent<0 or E[k]>E[parent])

while not heap: #move K upwards until E is a heap

swap(E[k],E[parent])

k=parent

parent = (k-1)//2

heap = = (parent<0 or E[k]>E[parent])

else: # K possibly smaller than a child of k

E[k]=K

heapify(E,k)

1



(b) The tree is

15

/ \

7 14

/ \ / \

3 6 10 13

/ \ / \ / \ / \

1 2 4 5 8 9 11 12

3. (a) You get the maximum value by looking at all possible blocks, and
adding the price for a block to the value of what remains; and
then take the maximum of all these possiblilities. So option a.

(b) def airtimevalue(price, n):

val = [0 for x in range(n+1)]

for m in range(1, n+1):

max = -1

for j in range(1, i+1):

max = max(max, price[j] + value[i-j])

value[m] = max

return value[n]

2


