1.

(a) This is actually selection sort. The outer loop iterates n times,
the inner loop on average n/2 times, with one comparison in the
inner loop, so asymptotic compexity ©(n?). It is an in—place
sorting algorithm.

(b) Use the Master Theorem, with a = 4 and b = 2, so F = log4/log2 =
2.

e clearly, cases 1 and 2 do not apply since £ = 2

e since f(n) =n® € Q(n?e) for e = 1, case 3 might apply

e and as 4(n/2)3 = 1/2n3 < cf(n) for ¢ = 1/2, case 3 applies:
T(n) € ©(n3)

(a) Changing item F[k| into K might cause two possible problems in
the heap:

e K might be bigger than the value for the parent of k: then
K needs to be swapped upwards until this is no longer the
case

e K might be bigger than the value for the child of k: this can
be solved by calling Heapify.

def update(E,K,k): # assume k<len(E), K not in E
if E[k] < K : # K possibly bigger than parent of k
Elk] =K

parent = (k-1)//2
heap = (parent<0 or E[k]>E[parent])

while not heap: #move K upwards until E is a heap
swap (E[k] ,E[parent])
k=parent
parent = (k-1)//2
heap = = (parent<0 or E[k]>E[parent])
else: # K possibly smaller than a child of k
E[k]=K
heapify(E,k)



(b) The tree is

3. (a) You get the maximum value by looking at all possible blocks, and
adding the price for a block to the value of what remains; and
then take the maximum of all these possiblilities. So option a.

(b) def airtimevalue(price, n):
val = [0 for x in range(n+1)]

for m in range(l, n+1):
max = -1
for j in range(l, i+1):
max = max(max, pricel[j] + valuel[i-j])
value[m] = max
return value[n]



