1.

(a)

(b)

This is actually bubble sort. The outer loop iterates n times, the
inner loop on average n/2 times, so asymptotic compexity @(nQ).
It is an in—place sorting algorithm.
Use the Master Theorem, with a = 4 and b = 2, s0 E = log4/log2 =
2.

e clearly, cases 1 and 2 do not apply since £ = 2

e since f(n) =n® € Q(n?e) for e = 1, case 3 might apply

e and as 4(n/2)3 = 1/2n3 < cf(n) for ¢ = 1/2, case 3 applies:

T(n) € O(n?)

This array is already a maxheap, so you do not need to do any-
thing.
The tree is

i1 3 5 7 9 11 13 15

If you traverse this tree in a pre—order way you encounter the
numbers in the following order:
8-4-2-1-3-6-5-7-12-10-9-11-14-13-15



3. (a) Either you don’t put object i in the backpack, so the remainder
weight is R(i—1, g), or you do put object 7 in it, and then the re-
mainder weight R(i—1,g—w;). You have to choose the minimum
of those two choices, so
(ii) R(i,9) = min{R(i — 1,9),R(i — 1,9 —w;)}.

(b) The algorithm to fill the matrix R containing the remainder weights
(we assume the indices in w range from 1 to n) :

def backpack(w,G):

n=len(w)
R=[[0 for g in range(G+1)] for i in range(n+1)]

for g in range(0,G+1):
R[0,gl=g # restgewicht gelijk aan g

for i in range(1l,n+1):
for g in range(0,G+1):
if (g-wl[il)<O0:
R[i,gl=R[i-1,g]
else:
R[i,gl=min(R[i-1,g],R[i-1,g-w[i]l])

return G-R[n,G];

The complexity of this algorithm is ©(n?).



