
1. (a) This is actually bubble sort. The outer loop iterates n times, the
inner loop on average n/2 times, so asymptotic compexity Θ(n2).
It is an in–place sorting algorithm.

(b) Use the Master Theorem, with a = 4 and b = 2, so E = log4/log2 =
2.

• clearly, cases 1 and 2 do not apply since E = 2

• since f(n) = n3 ∈ Ω(n2+ε) for ε = 1, case 3 might apply

• and as 4(n/2)3 = 1/2n3 ≤ cf(n) for c = 1/2, case 3 applies:
T (n) ∈ Θ(n3)

2. (a) This array is already a maxheap, so you do not need to do any-
thing.

(b) The tree is

8

/ \

4 12

/ \ / \

2 6 10 14

/ \ / \ / \ / \

1 3 5 7 9 11 13 15

If you traverse this tree in a pre–order way you encounter the
numbers in the following order:
8-4-2-1-3-6-5-7-12-10-9-11-14-13-15

1



3. (a) Either you don’t put object i in the backpack, so the remainder
weight is R(i−1, g), or you do put object i in it, and then the re-
mainder weight R(i−1, g−wi). You have to choose the minimum
of those two choices, so

(ii) R(i, g) = min{R(i− 1, g), R(i− 1, g − wi)}.
(b) The algorithm to fill the matrix R containing the remainder weights

(we assume the indices in w range from 1 to n) :

def backpack(w,G):

n=len(w)

R=[[0 for g in range(G+1)] for i in range(n+1)]

for g in range(0,G+1):

R[0,g]=g # restgewicht gelijk aan g

for i in range(1,n+1):

for g in range(0,G+1):

if (g-w[i])<0:

R[i,g]=R[i-1,g]

else:

R[i,g]=min(R[i-1,g],R[i-1,g-w[i]])

return G-R[n,G];

The complexity of this algorithm is Θ(n2).

2


