
Solutions: Algorithms & Data Structures

see separate pdf’s.

Solutions: Discrete Mathematics

4. (a) By the Bézout identity and since gcd(a, b) = 1, there exist x, y ∈ Z such that ax+ by = 1, and
thus acx+ bcy = c. By Theorem 4.3, since a|(acx) and a|bcy, it follows that a|c.
Here is an alternative argument that does not refer to Theorem 4.3: Since a|bc, there exists
q ∈ Z so that aq = bc, and by substituting bc in the above equation, we get acx + aqy = c, or
equivalently a(cx+ qy) = c. We have (cx+ qy) ∈ Z and in turn, a|c.

(b) The statement is correct. Assume that g := gcd(a, b)|c, which means that c = kg for some
k ∈ Z. As g = min{xa+yb > 0 | x, y ∈ Z}, we know that there exist x, y ∈ Z with g = xa+yb,
hence c = kg = (kx)a+ (ky)b, and s := kx ∈ Z, t := ky ∈ Z.

5. Let E(s) ⊆ δ(s) be the edges in δ(s) that have minimal weight (among the edges in δ(s)). Since
de > 0 for all e ∈ E, for any edge e = {s, v} ∈ E(s), there can be no shorter (s, v)-path than {s, v}
itself. Hence E(s) ⊆ D(s). We claim that E(s) ∩ T ̸= ∅ Assuming that E(s) ∩ T = ∅, pick any
e = {s, v} ∈ E(s), and consider the (unique) (s, v)-path PT (s, v) in T . Of course PT (s, v) must
contain some edge f ∈ δ(s), but df > de, because E(s) ∩ T = ∅. This would be contradicting the
path condition for minimum spanning trees, however. Therefore T∩E(s) ̸= ∅, and also T∩D(s) ̸= ∅.

6. Since the maximum flow in the network has value val(f) > k, by the strong duality theorem it
follows that the minimum (s, t)-cut (S, T) in the network has a capacity of c(S, T) = val(f) > k.
Since each edge has unit-capacity, this implies that the cut (S, T) consists of strictly more than k
many (forward) edges. We note that in the network G′ = (V,E′, c) obtained by removing an edge
e from a minimum cut (S, T) (i.e., E′ = E \ {e} for some e ∈ (S, T)), the cut (S, T) is again a
minimum cut but has its capacity decreased by exactly one unit. This follows from the fact that
any (s, t)-cut in G that did not contain e retains its capacity in G′, and every (s, t)-cut in G that
contained e will have a capacity reduced by exactly one unit in G′. This suggests the following
algorithm:

(a) Identify a minimum cut (S, T): Compute the residual graph Gf for G with respect to f . Run
the BFS algorithm from s in Gf to obtain the set S of vertices reachable from s. Set T := V \S.

(b) Remove k arbitrary (forward) edges from (S, T); let G∗ be the obtained graph.

We already argued that there exist (more than) k forward edges in (S, T) to be removed in the
second step, and that the resulting maximum flow f∗ in G∗ will have value val(f∗) = val(f) − k.
This is as small as possible since any (s, t)-cut has a capacity of at least val(f) in G and each edge
removal can only decrease the capacity of any cut by at most one unit.

Running time: Computing the residual graph Gf requires O(m)-time, and BFS O(n + m)-time.
Removing the k edges requires O(k) time. Since k < m, we have in total O(n+m) time.

7. (a) The characteristic polynomial of the corresponding homogeneous recurrence relation is x2 −
10x + 21 = (x − 3)(x − 7). The roots are x1 = 3 and x2 = 7. Hence the general solution to
the homogeneous recurrence relation is

a(h)n = c13
n + c27

n .

We use as the particular solution to the inhomogeneous recurrence relation

a(p)n = An3n ,

(because A3n would not be linearly independent). Plugging this into the recurrence relation
gives An3n − 10A(n − 1)3n−1 + 21A(n − 2)3n−2 = 60 · 3n for all n, so An3n(1 − 10

3 + 7
3) +

1

A3n(103 − 14
3) = 60 · 3n, hence A = −45. Therefore, the general solution to the inhomogeneous

recurrence relation is
an = c13

n + c27
n − 45n3n .

Now we have a0 = 2 = c1 + c2, and a1 = −5 = 3c1 + 7c2 − 135 . This yields c1 = −29 and
c2 = 31, and the solution equals

an = −29 · 3n + 31 · 7n − 45n3n .

(b) Let akn be the number of strings (with the required properties) that end on letter k, then

an = a0n + a1n + a2n .

Now we see that a0n = an−1, a
1
n = a1n−1 + a2n−1, and a2n = a1n−1 + a2n−1. That yields

an = an−1 + (an−1 − a0n−1) + (an−1 − a0n−1) = 3an−1 − 2an−2 .

Finally, a1 = 31 = 3, a2 = 32−2(for 01 and 02) = 7, a3 = 33−3 ·4(for 01X and X01 and 02X
and X02) = 15(= 3 · 7− 2 · 3).

8. n = 91 implies p = 7 and q = 13 (or vice-versa), and r = (p− 1)(q− 1) = 6 · 12 = 72. Eve wants to
compute the multiplicative inverse of e (in Z72). By using the extended Eucl. algorithm:

[
72 1 0
11 0 1

]
∼

[
6 1 −6
11 0 1

]
∼

[
6 1 −6
5 −1 7

]
∼

[
1 2 −13
5 −1 7

]
Therefore 1 = 2 · 72 − 13 · 11, and d = −13 (mod 72) = 59 (mod 72). Next she uses modular
exponentiation to compute M = 359 (mod 91) = 61. In detail, (59)2 = 111011 and so 359 =

32
5

32
4

32
3

32
1

32
0

.

Computing (mod 91) we have

32
0

= 3,

32
1

= 9,

32
2

= 81 = −10,

32
3

= 100 = 9,

32
4

= 81 = −10,

and 32
5

= 9.

This gives 359 (mod 91) = 9 · (−10) · 9 · 9 · 3 (mod 91) = 61.

9. (Although this question does not require motivating the answers, since this is a sample test, we do
include a proof for completeness.)

(a) False. Consider K4 (that is, the complete graph on 4 vertices), with all edges with equal
weights, then there are two minimum spanning trees which are the complement of each other,
hence disjoint.

(b) False. Consider graph with three nodes {s, v, t} and edges (s, v), (v, t) with capacities c(s, v) =
1 and c(v, t) = 2. Then the only maximum flow falsifies the claim on edge (v, t).

2

(c) False. Consider graph with four nodes {s, u, v, t} and edges (s, u), (s, v), (u, t), (v, t) with
weights w(s, u) = 1 and w(u, t) = 6, w(s, v) = 3 and w(v, t) = 4, then there are two shortest
(s, t)-paths of length 7.

(d) True. For a proof, please refer to the tutorial sessions. Note that arguing via Kruskals’s
algorithm is not sufficient, even though Kruskal’s algorithm computes a unique spanning tree.
But potentially, there could be minimum spanning tres that can’t be computed by Kruskal’s
algorithm. . . The actual proof is: Assume there exist two different MST’s T1 and T2, then
there exists at least one edge e = {u, v} ∈ T1 \ T2. As in T2, u and v are also connected
by a unique path PT2

(u, v), we know by the path condition (for T2), that wf ≤ we for all
edges f ∈ PT2

(u, v), and since all weights are different, wf < we for all edges f ∈ PT2
(u, v).

But now we get a contradiction to T1 being a minimum spanning tree, because in the cut
induced by T1 − e, there exists at least one edge f ∈ PT2(u, v), which is strictly cheaper than
e, contradictiong the cut condition for T1.

(e) True. G is disconnected and therefore non-Eulerian, in turn at least one edge needs to be
added in order to obtain an Eulerian graph. Adding one or two (non-parallel to keep the
graph simple) edges will result in at least two odd-degree vertices thus the graph cannot be
Eulerian. Since at least one of the two components is not complete, there exist vertices v, u
in the same component such that (u, v) ̸∈ E. Let w be an arbitrary vertex in the component
different to the one containing u and v. Adding the cycle consisting of edges (u, v), (v, w)
and (w, u) maintains the parity of all vertex-degrees, connects the two components and the
resulting graph is simple.

(f) False. Matching M is not stable, because (c,B) is an unstable pair with respect to M : both
c and B would prefer each-other over their partner in M .

3

