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Solutions: Discrete Mathematics

4.

5.

7.

(a) By the Bézout identity and since ged(a, b) = 1, there exist z,y € Z such that ax + by = 1, and
thus acx 4+ bey = ¢. By Theorem 4.3, since a|(acz) and a|bey, it follows that alc.
Here is an alternative argument that does not refer to Theorem 4.3: Since albe, there exists
q € Z so that aq = be, and by substituting be in the above equation, we get acx + aqy = ¢, or
equivalently a(cx + qy) = c¢. We have (cx + qy) € Z and in turn, alc.

(b) The statement is correct. Assume that g := ged(a, b)|c, which means that ¢ = kg for some
ke€Z. As g =min{xza+yb > 0| z,y € Z}, we know that there exist z,y € Z with g = za+ yb,
hence ¢ = kg = (kz)a + (ky)b, and s :==kx € Z, t := ky € Z.

Let E(s) € d(s) be the edges in d(s) that have minimal weight (among the edges in d(s)). Since
d. > 0 for all e € E, for any edge e = {s,v} € F(s), there can be no shorter (s,v)-path than {s,v}
itself. Hence E(s) C D(s). We claim that E(s) N'T # () Assuming that E(s) N T = 0, pick any
e = {s,v} € E(s), and counsider the (unique) (s,v)-path Pr(s,v) in T. Of course Pr(s,v) must
contain some edge f € d(s), but dy > d., because E(s) N T = (. This would be contradicting the
path condition for minimum spanning trees, however. Therefore TNE(s) # 0, and also TND(s) # 0.

Since the maximum flow in the network has value val(f) > k, by the strong duality theorem it
follows that the minimum (s,t)-cut (S,T) in the network has a capacity of ¢(S,T) = val(f) > k.
Since each edge has unit-capacity, this implies that the cut (S,T) consists of strictly more than k
many (forward) edges. We note that in the network G’ = (V, E’, ¢) obtained by removing an edge
e from a minimum cut (S,7T) (i.e., E' = E\ {e} for some e € (S,T)), the cut (S,T) is again a
minimum cut but has its capacity decreased by exactly one unit. This follows from the fact that
any (s,t)-cut in G that did not contain e retains its capacity in G’, and every (s,t)-cut in G that
contained e will have a capacity reduced by exactly one unit in G’. This suggests the following
algorithm:

(a) Identify a minimum cut (S,7"): Compute the residual graph G for G with respect to f. Run
the BF'S algorithm from s in G to obtain the set S of vertices reachable from s. Set T := V'\ S.

(b) Remove k arbitrary (forward) edges from (S, T'); let G* be the obtained graph.

We already argued that there exist (more than) k forward edges in (S,T") to be removed in the
second step, and that the resulting maximum flow f* in G* will have value val(f*) = val(f) — k.
This is as small as possible since any (s, ¢)-cut has a capacity of at least val(f) in G and each edge
removal can only decrease the capacity of any cut by at most one unit.

Running time: Computing the residual graph Gy requires O(m)-time, and BFS O(n 4+ m)-time.
Removing the k edges requires O(k) time. Since k < m, we have in total O(n 4+ m) time.

(a) The characteristic polynomial of the corresponding homogeneous recurrence relation is 2% —

10z 4+ 21 = (x — 3)(z — 7). The roots are 1 = 3 and z2 = 7. Hence the general solution to
the homogeneous recurrence relation is

a%h) =c13" + 7"
We use as the particular solution to the inhomogeneous recurrence relation
alP) = An3™,

(because A3™ would not be linearly independent). Plugging this into the recurrence relation
gives An3"™ — 10A(n — 1)3"1 + 21A(n — 2)3"~2 = 60 - 3" for all n, so An3"(1 — 2 + 1)+



A3"(13—0 — 13—4) =60-3", hence A = —45. Therefore, the general solution to the inhomogeneous

recurrence relation is
an = 13" + 7" — 45n3™ .

Now we have ag = 2 = ¢; + c3,and a1 = —5 = 3¢y + Tco — 135. This yields ¢; = —29 and
co = 31, and the solution equals

ap =—29-3"431-7" —45n3™.
(b) Let a¥ be the number of strings (with the required properties) that end on letter k, then
anp :agl—l—a?ll—i—ai.
Now we see that a0 = a,_1, al =al ; +a? |, and a2 = al | +a?_,. That yields
Qp = Gp—1 + (an—l - a2_1) + (an—l - a2_1) =3ap_1—2an_2.

Finally, a; = 3! = 3, ay = 32 —2(for 01 and 02) = 7, a3 = 3> —3-4(for 01X and X01 and 02X
and X02) = 15(=3-7 —2-3).

8. n =91 implies p = 7 and ¢ = 13 (or vice-versa), and r = (p — 1)(¢ — 1) = 6 - 12 = 72. Eve wants to
compute the multiplicative inverse of e (in Zz3). By using the extended Eucl. algorithm:

72 1 0 6 1 —6 6 1 —6 1 2 -13

11 0 1 11 0 1 5 -1 7 5 —1 7
Therefore 1 = 2-72 — 13- 11, and d = —13 (mod 72) = 59 (mod 72). Next she uses modular
exponentiation to compute M = 3% (mod 91) = 61. In detail, (59); = 111011 and so 3% =
32°32'32°32'3%",
Computing (mod 91) we have

32" =3,

32" =09,

3% = 81 = —10,
23

32" =100 =9,
24

32" =81 = —10,

and 3% = 9.

This gives 3°? (mod 91) =9+ (—10)-9-9-3 (mod 91) = 61.

9. (Although this question does not require motivating the answers, since this is a sample test, we do
include a proof for completeness.)

(a) False. Consider K, (that is, the complete graph on 4 vertices), with all edges with equal
weights, then there are two minimum spanning trees which are the complement of each other,
hence disjoint.

(b) False. Consider graph with three nodes {s, v,t} and edges (s, v), (v,t) with capacities ¢(s,v) =
1 and ¢(v,t) = 2. Then the only maximum flow falsifies the claim on edge (v, t).



()

(d)

False. Consider graph with four nodes {s,u,v,t} and edges (s,u),(s,v), (u,t),(v,t) with
weights w(s,u) = 1 and w(u,t) = 6, w(s,v) = 3 and w(v,t) = 4, then there are two shortest
(s,t)-paths of length 7.

True. For a proof, please refer to the tutorial sessions. Note that arguing via Kruskals’s
algorithm is not sufficient, even though Kruskal’s algorithm computes a unique spanning tree.
But potentially, there could be minimum spanning tres that can’t be computed by Kruskal’s
algorithm. .. The actual proof is: Assume there exist two different MST’s 717 and T, then
there exists at least one edge e = {u,v} € T3 \ Ta. As in T», u and v are also connected
by a unique path Pr,(u,v), we know by the path condition (for T5), that wy < w. for all
edges f € Pr,(u,v), and since all weights are different, w; < we for all edges f € Pr,(u,v).
But now we get a contradiction to 7} being a minimum spanning tree, because in the cut
induced by T; — e, there exists at least one edge f € Pr,(u,v), which is strictly cheaper than
e, contradictiong the cut condition for T7.

True. G is disconnected and therefore non-Eulerian, in turn at least one edge needs to be
added in order to obtain an Eulerian graph. Adding one or two (non-parallel to keep the
graph simple) edges will result in at least two odd-degree vertices thus the graph cannot be
Eulerian. Since at least one of the two components is not complete, there exist vertices v, u
in the same component such that (u,v) € E. Let w be an arbitrary vertex in the component
different to the one containing v and v. Adding the cycle consisting of edges (u,v), (v, w)
and (w,u) maintains the parity of all vertex-degrees, connects the two components and the
resulting graph is simple.

False. Matching M is not stable, because (¢, B) is an unstable pair with respect to M: both
c and B would prefer each-other over their partner in M.



