Question 1

(a) Convert the decimal number -15 to a 6-bit 2-complement binary number. First give your final answer (the binary number):

Briefly explain your answer.

Word count: 0 , character count: 0
(b) Convert the (unsigned) binary number 01001101100 to hexadecimal; first give the \square

Briefly explain your answer.

Word count: 0 , character count: 0
(c) Convert the hexadecimal number 2A8 to decimal; first give the finc \square

Briefly explain your answer.
\square
Word count: 0, character count: 0
(d) Suppose we make a new number system for 4-digit binary numbers, by giving the bits, from left to right, the following weights: $2,4,2,1$. What can we say about this?

A O With this system, we can represent all integers from 0 to 9 , and each of them in only one way.
D OThis is useless because the weights should all be different.
B O With this system, we can represent some, but not all integers from 0 to 9 .
E OThis is useless because it cannot represent negative numbers.
C O With this system, we can represent all integers from 0 to 9 , and some of them can be represented in multiple ways.
(e) Given a 5-bit, 2-complement, binary number, which of the following operations multiplies it by -1 ?

D O First add the binary number 00001 to it, and then invert all bits.
C O First invert all bits and then add the binary number 00001 to it.
A OShift to the right by 1 position, dropping the right-most bit, and inserting a 0 at the left.
E OShift to the left by 1 position, dropping the left-most bit, and inserting a 0 at the right.
B Olnvert all bits.

Klag this question \because Calculator
\rightarrow Save and continue

Question 2

(a) Give the truth table of a 3-input OR/XOR-gate: if input $A=1$, the output D is the $O R$ of inputs B and C, otherwise, it is the XOR C.The XOR ("exclusive OR") of two inputs is 1 if one of the inputs is 1 , but not both.
(You may not need all rows in the table; leave any unused rows blank.)

	A	B	C	D	
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

The editable cells are marked in light yellow.
(b) In the left-most column of the below table, we give a derivation in Boolean algebra, (starting $\overline{\text { (}}$ with $\bar{B} \cdot \bar{C}$, making one step per row.
Indicate in each row, which rule of Boolean algebra is used to make that step. Choose "wrong" if you think that that step is not c possible that a rule is used multiple times, or not at all, in this derivation; however, each step uses only a single rule.)
To clarify this, in the first row you should indicate which Boolean algebra rule is used to demonstrate that the formula on that ro $1 \cdot \overline{A B} \cdot \bar{C}$, follows from our starting form $($ una $+\bar{A}) \cdot \overline{A B} \cdot \bar{C}$. The second row should indicate how the formula on the second row follows from the formula on the first row, and so on.

wrong	DeMorgan	distributive	commutative	identity	complement	associative
J	I	F	L	H	G	K

$$
\begin{aligned}
& =1 \cdot \overline{A B} \cdot \bar{C} \\
& =\overline{A B} \cdot \bar{C} \\
& =\bar{A} \cdot \overline{B C} \\
& =\overline{A+B C} \\
& =\overline{(A+B) \cdot(A+C)}
\end{aligned}
$$

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

0
0
0
0
0
0
(c) Describe the operation of the following logic circuit as a formula in Boolean logic.

Note: Boolean formulas often have a bar above part of the equation. If this is the case in your formula, you can either use the bu editor to type this (accessible via the \sum button), or simply type something like not(ABC) or /(ABC), as long as it's clear what you

(d) Suppose we take a 2 -input OR gate, and put inverters at its inputs and at its output. What do we get?

B OOR gate
C ONAND gate.
D OAND gate.
A ONOR gate.
E O None of the above.

Question 3

The ALU of the processor above has two instructions: $0=$ 'ADD' and $1=$ 'MUL'.
The register bank (RB) contains four 8-bit registers.
Initially R1, R2 and R3 contain some numbers andz, respectively.
Give for this processor the program for compugifg $x z+x$ and storing the result in R1.
(You may not need all timeslots.)

	A	B	C	D
1		read address 1 read address 2 instruction / write address		
2	Timeslot 0			
3	Timeslot 1			
4	Timeslot 2			
5	Timeslot 3			
6	Timeslot 4			

The editable cells are marked in light yellow.

Question 4

Consider the following AVR program: (INC and DEC are increment and decrement; BRNE is branch if not zero; MOV is MOVe, or actu copy)

LDI	R19, \$01
LDI	R17, \$01
ADD	R17, R19
ADD	R19, R19
MOV	R18, R19
DEC	R18
BRNE -2	
INC	R18
DEC	R17
BRNE -5	

Write in the below table the contents of the registers after each instruction, one instruction per line. If a register doesn't change fror the next, you may leave it blank. If the instruction is a jump or branch, use the "branch/comment" column to write down whether a performed, and if so, to where (e.g., "branch to LDI R19,\$00"). You may not need all the lines in the table.

	A	B	C	D	E
1		R17	R18	R19	branch/comment
2	1				
3	2				
4	3				
5	4				
6	5				
7	6				
8	7				
9	8				
10	9				
11	10				
12	11				
13	12				
14	13				
15	14				
16	15				
17	16				
18	17				
19	18				
20	19				
21	20				

The editable cells are marked in light yellow.
How many clock cycles does the program take? (On the AVR processor, each instruction takes 1 clock cycle, except jumping to a dif address, which takes 2 clock cycles).

First give the numerical answer:
\qquad

Explain your answer:

Question 5

What is the mathematical function that is computed by the code below?
Assume that X and Y are positive; the final result is in R19.
(You may not have seen the BRCC instruction before: it's BRanch if Carry Clear, so it jumps if the previous instruct set the carry flag, i.e., did not result in an overflow (in addition) or negative number (in subtraction).)

LDI R17, \$X
LDI R18, \$Y
LDI R19, \$00
repeat:
INC R19
SUB R17, R18
BRCC repeat
DEC R19

Write as a function of X and Y, e.g. $f(X, Y)=X+Y$:
\square
Explain your answer:

Word count: 0 , character count: 0

Flag this question
\rightarrow Save and continue

