
1. (a) Sorting an array of length 1 or 2 costs 1 comparison. For arrays
with more elements we have 3 recursive calls, each with an ar-
ray of length 2

3 of the original length. The non-recursive costs
are 1 (since we have 1 comparison). This leads to the following
recurrent equation for W (n):

W (n) = 1 for n < 3
W (n) = 3 ·W (2n3 ) + 1 for n ≥ 3

(b) We apply the Master theorem with b = 3 and c = 3, so E =
log3/log3 = 1. Now 3 ∈ O(n1−ε) for some ε, so we have case 1,
so T (n) ∈ Θ(n).

2. (a) Then you could sort n elements by first creating a priority queue
by n repeated insertions, and then n times selecting (and delet-
ing) the minimum. This would have complexity Θ(n), which is
impossible as the optimal complexity for sorting is Θ(n log n).

(b) The tree is

A

/ \

B I

/ \ / \

C F J M

/ \ / \ / \ / \

D E G H K L N O

If you traverse this tree in an in–order way you encounter the
letters in the order DCEBGFHAKJLINMO

3. (a) • If v[1..j] is empty, then you need i delete’s to turn u[1..i] into
the empty string, so D[i, j] = i if j = 0

• If u[1..i] is empty, then you need to insert the j elements of
v[1..j] into the empty string, so D[i, j] = j if i = 0

• If u[i] = v[j] then you still need to turn u[1..i− 1] into v[1..j−
1], so so D[i, j] = D[i− 1, j − 1] if u[i] = v[j]

• Otherwise, you could delete u[i] (and then you still need to
turn u[1..i − 1] into v[1..j]), or you could insert v[j] at the
end of u[1..i] (and then you would still need to turn u[1..i]
into v[1..j − 1]). Now you take the minimum of the num-
ber of these two possibilities, so D[i, j] = 1 + min{D[i −
1, j], D[i, j − 1]} otherwise

1



(b)

def distance(u,v):

n=len(u)-1

m=len(v)-1

D=[[0 for j in range(m+1)] for i in range(n+1)]

for i in range(0,n+1):

D[i,0]=i

for j in range(0,m+1):

D[0,j]=j

for i in range(1,n+1):

for j in range(1,m+1):

if u[i]=v[j]:

D[i,j]=D[i-1,j-1]

else:

D[i,j]=1+min(D[i-1,j],D[i,j-1])

return D[n,m];

The complexity of this algorithm is Θ(mn).

2


