1.

(a) Sorting an array of length 1 or 2 costs 1 comparison. For arrays
with more elements we have 3 recursive calls, each with an ar-
ray of length % of the original length. The non-recursive costs
are 1 (since we have 1 comparison). This leads to the following
recurrent equation for W (n):

W(n) = 1 forn <3
W(n) = 3~W(%”)+1 forn >3
(o) We apply the Master theorem with b = 3 and ¢ = 3, so F =
log3/log3 = 1. Now 3 € O(n'~¢) for some ¢, so we have case 1,
so T'(n) € O(n).

(a) Then you could sort n elements by first creating a priority queue
by n repeated insertions, and then n times selecting (and delet-
ing) the minimum. This would have complexity ©(n), which is
impossible as the optimal complexity for sorting is ©(nlogn).

(b) The treeis

If you traverse this tree in an in—order way you encounter the
letters in the order DCEBGFHAKJLINMO

(@) e Ifv[l..5] is empty, then you need i delete’s to turn ul[1..7] into
the empty string, so D[i,j] =iif j =0

e If u[l..7] is empty, then you need to insert the j elements of
v[1..7] into the empty string, so D[i,j] =jifi =0

e If u[i] = v[j] then you still need to turn u[1..i — 1] into v[1..5 —
1], so so DJi,j] = D[i — 1,7 — 1] if u[i] = v[j]

e Otherwise, you could delete u[i] (and then you still need to
turn w[l.. — 1] into v[1..5]), or you could insert v[j] at the
end of u[1..7] (and then you would still need to turn u[1..7]
into v[1..5 — 1]). Now you take the minimum of the num-
ber of these two possibilities, so D[i,j] = 1 + min{D][i —
1, 4], D[i, j — 1]} otherwise

1



(b)

def distance(u,v):

n=len(u)-1
m=len(v)-1

D=[[0 for j in range(m+1)] for i in range(n+1)]

for i in range(O,n+1):
D[i,0]=1i

for j in range(0,m+1):
D[0,jl=]

for i in range(1,n+1):
for j in range(1l,m+1):
if ulil=v([jl:
D[i,jl=D[i-1,j-1]
else:
D[i,jl=1+min(D[i-1,3],D[i,j-11)

return D[n,m];

The complexity of this algorithm is ©(mn).



