
Software Systems Design Test 12 December 2019 – Solutions

More than 10% of the students did not read the instructions in the block on the front

page.

Marks were given for correct parts of the drawing. No marks were deducted for errors.

Question 1 (Activity Diagram) (25%)

One suggested version of the activity diagram. Several other options are possible.

Notes: The way we use activity diagrams in this course is to map very high level activities in a

business/section of a business/other environment. This is the first diagram that is drawn when you

try and find out what the customers are doing in their business. Activity diagrams can be used on

other levels of the design process as well, then they will be more focused and can contain more

detail. Several of you included too much detail. The purpose is to understand what activities take

place so that you can identify the ones that relate to the software system that needs to be built and

you will, therefore, have to explore further.

A common problem was that the 1 hour and 15 minutes warnings were included in the reservation

section of the diagram. This has nothing to do with the reservation that a customer makes. It has to

do with the fact that if a certain customer group is sitting at a table that is reserved by another

customer these current customers will be warned, not the customer that has made the reservation.

This happens in parallel with the current customer’s ordering and eating.

A call for a late reservation is treated the same as a change in reservation in this diagram, because

the same activities take place. This could be modelled in different ways.

Different versions can be drawn for this activity diagram. The marks were given for having the right

types of activities and a sensible flow.

Question 2 (Use Cases) (30%)

Question 2a(Use Case Diagram) (20%)

Notes: The use case diagram is for high level activities that will be interactions between the user and

the computer. Each bubble represents one interaction. The customer does not interact with the

computer so is not included. A general mistake was to add low level functions which are part of other

activities. For example, checking availability of tables is a subfunction of the main function which is

to make or change a reservation, or handle customer arrival.

Question 2b(Use Case Description)(10%)

Waiter System Response

1. Selects to make a reservation 2. Displays calendar

3. Selects date 4. Displays time selection screen

5. Selects time and duration 6. Displays table screen with table
numbers, table sizes, colour coded
whether available, pre-reserved or
reserved

7a. Table available

7b. Table not available but wants to
try another date/time
7c. Table not available and does not
want to make another reservation

8a. Reserves table and displays
customer information screen
8b. Repeat from 2

8c. Stop

9. Asks customer for the name and
telephone number

10. Confirms reservation

7b and 7c can be done as Alternatives.

4, 5, 6 can be done in different ways.

Notes. Many did not read this question properly.

Question 3 (Class Diagram) (20%)

Notes: In this class diagram the manager was taken to be one of the restaurant staff. This could have

been modelled differently depending on the functions of the manager.

The manager could have been included in several ways. The manager is not linked to Bills or Orders,

as the statistics would just draw a summary from all data during a specific time period for the

manager and is not linked to a certain manager.

Question 4 (State Machine Diagram)(10%)

Question 5 (Software Metrics) (15%)

Q5a)

To get full marks, it is expected to have the correct answer alongside some way of showing how it

was reached.

The main two ways were:

1) Drawing the correct graph and using the formula C = E - V + 2 = 4

2) The corollary from the slides: CC = # Binary Decisions + 1 = 4

Q5b)

Low cyclomatic complexity is considered good practice for code maintainability.

This can be achieved by overall reducing the amount of (binary) decision points, e.g. via splitting

methods into sub-methods, or other code refactoring methods.

Mentioning specifics (like splitting up a method into smaller parts) is awarded more points than

mentioning general statements (like 'rewrite the code').

Note in particular that 5b is to be answered independently from 5a, i.e. the question is not how to

reduce the CC in 5a.

