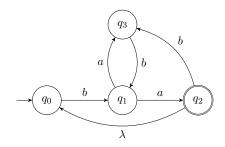
Kenmerk: EWI2019/TW/DMMP/MU/Mod7/Exam2


Exam 2, Module 7, Codes 201400483 & 201800141 Discrete Structures & Efficient Algorithms Friday, March 29, 2019, 13:45 - 15:45

All answers need to be motivated. No calculators. You are allowed to use a handwritten cheat sheet (A4, both sides).

This second exam of Module 7 consists of the **L&M part** only, and is a **2h exam**. The total is 50 points. Your exam grade is the maximum of 1 and the total number of points divided by 5, rounded to one digit.

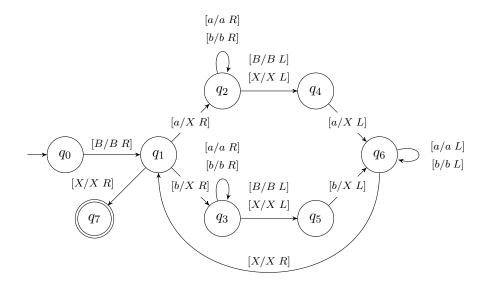
Languages & Machines

1. (11 points) Consider the following NFA with λ -steps M (only q_2 is accepting):

- (a) First eliminate state q_3 , adding new transitions labeled with regular expressions, to preserve the accepted language. Show the resulting "expression graph".
- (b) Continue the construction, by eliminating q_1 as well, and read off a regular expression E with $\mathcal{L}(E) = \mathcal{L}(M)$.
- (c) Provide the λ -closure and input-transition function of the automaton M in a table.
- (d) Transform the automaton M in a systematic manner to a (possibly incomplete) DFA.
- 2. (9 points) Consider the definitions of the following languages over $\Sigma = \{a, b\}$:
 - Language $L_1 := \{a^{2i} b^j \mid 0 \le i \text{ and } 0 \le j\}$
 - Language $L_2 := \{a^i b^j a^i \mid 0 \le i \text{ and } 0 \le j\}$
 - Language L_3 is an (arbitrary) finite language

Indicate for each of the following languages if they are regular or not. Motivate your answers, either by a proof or a construction.

- (a) Language L_1
- (b) Language L_2
- (c) Language $\overline{L_3} \cup L_3^R$


3. (5 points) Which variables can be derived by chain rules from C in the following grammar G_1 ? Provide an equivalent grammar without chain rules.

$$G_{1} = \begin{cases} S \rightarrow AB \mid C \\ A \rightarrow aA \mid B \\ B \rightarrow bB \mid C \\ C \rightarrow cC \mid a \mid A \end{cases}$$

4. (5 points) Provide a regular grammar, equivalent to the following context-free grammar G_2 :

$$G_2 = \left\{ \begin{array}{ccc} S & \rightarrow & B S \mid A B \\ A & \rightarrow & A a a \mid \lambda \\ B & \rightarrow & b \end{array} \right.$$

- 5. (5 points) Consider the context-free language $L = \{a^i b^{i+j} c^j \mid i, j > 0\}$. Give a DPDA (*deterministic* pushdown automaton) for L. Provide a *short* explanation.
- 6. (5 points) Let G be a context-free grammar in Greibach Normal Form. Let P be a deterministic pushdown automaton, and let E be a regular expression. Is the language $\mathcal{L}(G) \cup (\mathcal{L}(P) \cap \mathcal{L}(E))$ context-free? (prove)
- 7. (5 points) Is the class of recursive languages closed under complement? (prove)
- 8. (5 points) Consider the following Turing Machine with a single tape. Which language is *decided* by this TM? (explain shortly)

