UNIVERSITEIT TWENTE.

Tag : Toetsen/ItM+Calc1A.18-19[02].Resit.EN

: Introduction to Mathematics + Calculus 1A Course

Date : Friday November 9th, 2018

Time : 13:45 - 16:45

Motivate all your answers. The use of electronic devices is not allowed.

- Λ (a) [2 pt] Let $A=\{\frac{k}{k+1}|k\in\mathbb{N}\}$. For each of the following, state whether it exists, 1. and if it does, determine its value: $\inf A, \max A, \min A, \sup A.$
 - $^{\upgamma}$ (b) [3 pt] Use a truth table to show that the statement $(p \to q) \to (p \land q)$ is not a tautology, and provide a counterexample.
- A 2. [3 pt] Let $m \in \mathbb{Z}$ and $n \in \mathbb{Z}$. Prove that if the product mn is even, then either m is even, or n is even (or both).
 - $\{$ 3. [3 pt] Use mathematical induction on n to prove that $\forall n \in \mathbb{N} \cup \{0\}$:

$$\sum_{i=0}^{n} \binom{i+2}{i} = \binom{n+3}{n}$$

Hint: use that $\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}$ for all $n\in\mathbb{N},r\in\mathbb{N},r\leq n.$

- Consider the set \boldsymbol{A} of numbers consisting of 4 digits, where each digit is from the 4. set $\{1,2,3\}$. For example $1311 \in A$.
 - $\sqrt{(a)}$ [1 pt] How many odd numbers are there in A?
 - (b) [2 pt] How many numbers in ${\cal A}$ are either odd, or start with the digit 1 (or
- 5./ Define P(1, -1, 0), Q(2, 0, 4), and R(2, 3, 1). Let $\mathbf{u} = \overrightarrow{PQ}$ and $\mathbf{v} = \overrightarrow{PR}$.
 - \lor (a) [1 pt] Calculate $\mathbf{u} \times \mathbf{v}$.
 - \checkmark (b) [2 pt] Find an equation of the plane that contains the points P, Q and R.
 - \checkmark (c) [2 pt] Find the angle between \mathbf{u} and \mathbf{v} .
 - \checkmark (d) [2 pt] Find the projection of ${\bf u}$ onto ${\bf v}$.
- 6. [2 pt] Calculate

$$\lim_{x \to 0} \frac{x \, e^x}{e^{2x} - 1}.$$

Define 7.

$$f(x) = \begin{cases} x \sin(\ln|x|) & \text{if } x \neq 0, \\ 1 & \text{if } x = 0. \end{cases}$$

O(5 (a) [2 pt] Show that $\lim_{x\to 0} f(x) = 0$. (b) [1 pt] Is f continuous at 0? Motivate your answer.

The function $f\colon (-\infty,3]\to \mathbb{R}$ is defined by 8.

$$f(x) = \sqrt{3x^2 - x^3}.$$

(a) [2 pt] Using the definition of the derivative, show that f is not differentiable

 $\mathcal{N}_{\ell_{\boldsymbol{\zeta}}}$ (b) [2 pt] Find all critical points of f.

 \bigcirc , \bigcirc (c) [1 pt] Find the absolute extreme values of f on the interval [1,3].

⊙ [5 9. [2 pt] Calculate

$$\lim_{(x,y)\to(0,0)}\frac{x^2-y^2}{\sqrt{x^2+y^2}},$$

or show that this limit does not exist.

m imes 10.~[3~pt]~ Find an equation for the tangent plane to the graph of the function

$$f(x,y) = \ln(x^2 + y^2 - 1)$$

at the point (1, -1, f(1, -1)).

Simplify the equation as much as possible.

Total: 36 points