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� This is an ‘open book’ examination. You are allowed to have a copy of Java Concurrency
in Practice, an (unannotated) copy of the course manual, a copy of the (unannotated)
lecture (hoorcollege) slides, and print outs of the following additional material:

• A gentle introduction to OpenCL - DrDobbs, by M. Scarpino.

• B. Chapman, G. Jost and R. van der Pas. Using OpenMP - The Book.

• Simon Peyton Jones and Satnam Singh. A Tutorial on Parallel and Concurrent Pro-
gramming in Haskell. Advanced Functional Progamming Summer School.

• The Rust Programming Language, second edition.

You are not allowed to take personal notes, solutions to the exercises, and (answers to)
previous examinations with you.

� You can earn 100 points with the following 5 questions. The final grade is computed as
the number of points, divided by 10. The bonus points that were obtained by participating
in the quiz during the tutorial sessions and the first lecture will be added to the final result.

GOOD LUCK!

ANSWERS

Question 1 (30 points)

a. (11 pnts.) Suppose you have an existing reentrant lock implementation, providing methods lock and
unlock. Use this lock implementation to implement a (reentrant) read-write-lock. Your implementation
should provide the methods acquireReadLock, acquireWriteLock, releaseReadLock, and
releaseWriteLock. Remember to indicate which fields are protected by which lock. You may assume
that methods will be called according to the lock protocol, i.e., a release method will only be called if the
lock is actually held.

b. (6 pnts.) Sometimes read-write-lock implementations provide an upgrade feature: a thread holding a read
lock, can upgrade its lock to a write lock. Discuss one advantage, and one disadvantage of such a feature.

c. (5 pnts.) The use of read-write-locks could lead to starvation. Discuss why, and suggest (in words) a change
to your implementation that would reduce this risk.

d. (8 pnts.) Provide a lock-free implementation of a read-write-lock.

Solution to Question 1

a. (11 pnts.)
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import java.util.concurrent.locks.*;

public class ReadWriteLock {

private final Lock l = new ReentrantLock();
private int counter = 0; // guardedby l;
private boolean writerActive = false; // guardedby l;

// readLock held if counter > 0
// writeLock held if writerActive
// lock free if counter == 0 && ! writerActive
//@ invariant ! ((counter > 0) & writerActive)

private final Condition lockFree = l.newCondition();

public void acquireReadLock() throws InterruptedException {
l.lock();
try {

while (writerActive) {
lockFree.await();
}
counter = counter + 1;

}
finally {

l.unlock();
}
}

public void acquireWriteLock() throws InterruptedException{
l.lock();
try {

while (counter > 0 || writerActive) {
lockFree.await();
}
writerActive = true;

}
finally {

l.unlock();
}
}

public void releaseReadLock() {
l.lock();
try {

counter = counter - 1;
if (counter == 0) {
lockFree.signalAll();
}

}
finally {

l.unlock();
}
}

public void releaseWriteLock() {
l.lock();
try {

writerActive = false;
lockFree.signalAll();
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}
finally {

l.unlock();
}
}

}

Points subtracted: no final (-1), no wait/notify (or await/signal) used: -5, no guardedby (or something equiv-
alent): -2.

b. (6 pnts.)

• Advantage (3 pnts): if you upgrade from read to write lock, you know that the data protected by the
lock is not changed in between. If you first have to release the read lock, and then acquire the write
lock, the data might be changed.

• Disadvantage (3 pnts): risk of deadlock. If two threads hold a read lock try to upgrade to a write lock,
they are waiting for the other threads to release their read lock, but will never give up their own read
lock.

Argument that performance increases: 1 point only, as you still have to wait to get exclusive write access.

c. (5 pnts.) If there are always a few threads holding the read lock, a thread wanting to acquire the write lock
might never get a chance to proceed (2 pnts). Possible solution: disallow new threads to obtain the readLock
if there is a thread waiting for the writeLock (3 pnts).

d. (8 pnts.)

import java.util.concurrent.atomic.*;

public class ReadWriteLockLockFree {

private AtomicInteger counter = new AtomicInteger(0);

// readLock held if counter > 0
// writeLock held if counter == - 1
// lock free if counter == 0

public void acquireReadLock() {
int c;
do {

c = counter.get();
if (c < 0) {
continue;
}

}
while (!counter.compareAndSet(c, c + 1));
}

public void acquireWriteLock() {
int c;
do {

c = counter.get();
if (c != 0) {
continue;
}

}
while (!counter.compareAndSet(c, -1));
}
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public void releaseReadLock() {
int c;
do {

c = counter.get();
}
while (!counter.compareAndSet(c, c - 1));
}

public void releaseWriteLock() {
counter.set(0);
}

}

Two atomic integers used: -4 points.



Test Concurrent Programming — 4 July 2018 (ANSWERS) 5

Question 2 (30 points)

In this exercise, we will study the reference implementation for the LinkedBlockingQueue as available in Java.
The class starts with the following declarations and constructor.

static class Node<E> {
/** The item, volatile to ensure barrier separating write and read */

volatile E item;
Node<E> next;
Node(E x) { item = x; }

}

/** The capacity bound, or Integer.MAX_VALUE if none */
private final int capacity;

/** Current number of elements */
private final AtomicInteger count = new AtomicInteger(0);

/** Head of linked list */
private transient Node<E> head;

/** Tail of linked list */
private transient Node<E> last;

/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock();

/** Wait queue for waiting takes */
private final Condition notEmpty = takeLock.newCondition();

/** Lock held by put, offer, etc */
private final ReentrantLock putLock = new ReentrantLock();

/** Wait queue for waiting puts */
private final Condition notFull = putLock.newCondition();

public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
last = head = new Node<E>(null);

}

a. (2 pnts.) Explain why the locks putLock and takeLock are declared final.

b. (13 pnts.) Figure 1 contains the code for the methods put and take (with helper methods). Discuss what
these methods do, and why they do this correctly. In particular, discuss the following:

• How do these methods guarantee that concurrent execution of put and take is possible?
• Which fields are protected by which locks?
• For all fields that are not protected by a lock, why it is okay that they are not protected by a lock?
• Why is it okay to use count in the wait guard, even though it is not protected by a lock?

c. (5 pnts.) Provide an implementation for the method signalNotEmpty, which signals that there is an element
available in the queue.

private void signalNotEmpty() {
// body

}

Question continued on page 4!
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private void insert(E x) {
last = last.next = new Node<E>(x);

}

private E extract() {
Node<E> first = head.next;
head = first;
E x = first.item;
first.item = null;
return x;

}

public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
// Note: convention in all put/take/etc is to preset
// local var holding count negative to indicate failure unless set.
int c = -1;
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {

try {
while (count.get() == capacity)

notFull.await();
} catch (InterruptedException ie) {

notFull.signal(); // propagate to a non-interrupted thread
throw ie;

}
insert(e);
c = count.getAndIncrement();
if (c + 1 < capacity)

notFull.signal();
} finally { putLock.unlock(); }
if (c == 0)

signalNotEmpty();
}

public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {

try {
while (count.get() == 0)

notEmpty.await();
} catch (InterruptedException ie) {

notEmpty.signal(); // propagate to a non-interrupted thread
throw ie;

}
x = extract();
c = count.getAndDecrement();
if (c > 1)

notEmpty.signal();
} finally { takeLock.unlock(); }
if (c == capacity)

signalNotFull();
return x;

}

Figure 1: Methods put and take as provided in reference implementation java.util.concurrent
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d. (5 pnts.) Provide an implementation for the method toArray, which returns an array with all elements
currently stored in the queue.

public Object[] toArray() {
// body

}

e. (5 pnts.) Give a realistic example how careless use of the two locks could lead to a deadlock.

Solution to Question 2

a. (2 pnts.) So that the locks cannot be changed during program execution. This is necessary for thread-safety:
correct protection of data, and to make sure that the lock that was acquired, will also be released again.

b. (13 pnts.)

• (2 pnts) put tries to acquire the putLock. If that succeeds, and the buffer is not full, a new node is
created, and the the next pointer from the old last field, and the last pointer are set to point to this
new node, and the lock is released. At the same time, count (counting the number of elements in the
queue) is increased. If there is still space in the buffer, signal a notFull. If the buffer was empty before,
signal a notEmpty. If the buffer was full, the thread goes waiting until it receives a notFull signal.

• (2 pnts) take tries to acquire the takeLock. If that succeeds, and if the buffer is not empty head is
moved one forward, and head.item is returned. At the same time, count is decreased. If the buffer is
not empty, signal that. If the buffer was full before, signal a notFull.

• (2 pnts) Methods work on disjoint parts of the memory (even for empty list), and therefore can be
safely executed in parallel

• (2 pnts) putLock guards last and last.next. takeLock guards head and head.item. Thus they are disjoint,
and can be acquired simultaneously.

• (2 pnt) count is accessed by both threads, but this is an atomic field, that is why this is okay.

• (1 pnt) capacity is a read-only field, therefore it does not have to be protected by a lock.

• (2 pnts.) Count in condition works because in the put method, count can only decrease at this point (all
other puts are shut out by lock), and the thread trying to execute this put (or some other waiting put)
are signalled if there is a change in capacity. Similar, but inverse argument for take.

c. (5 pnts.) Essential that it acquires the takeLock, otherwise 0 points.

/**
* Signals a waiting take. Called only from put/offer (which do not

* otherwise ordinarily lock takeLock.)

*/
private void signalNotEmpty() {

final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {

notEmpty.signal();
} finally {

takeLock.unlock();
}

}

d. (5 pnts.) Essential that both locks are acquired, otherwise 0 points.

private void fullyLock() {
putLock.lock();
takeLock.lock();

}
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public Object[] toArray() {
fullyLock();
try {

int size = count.get();
Object[] a = new Object[size];
int k = 0;
for (Node<E> p = head.next; p != null; p = p.next)

a[k++] = p.item;
return a;

} finally {
fullyUnlock();

}
}

e. (5 pnts.) There are multiple methods that require both locks (toArray, but also remove from the middle of
the queue). If one acquire putLock first, then takeLock and the other does it in the other order, there is a
big risk of deadlock.

Question 3 (10 points)

a. (6 pnts.) Consider the following parallel quicksort algorithm, implemented in Haskell:

force :: [a] -> ()
force xs = go xs ‘pseq‘ () where

go [] = 1
go (_:xs) = go xs

par_qsort :: (Ord a) => [a] -> [a]
par_qsort [] = []
par_qsort (x:xs) = (force h) ‘par‘ ((force l) ‘par‘ (l ++ x : h)) where

l = par_qsort [y | y <- xs, y < x]
h = par_qsort [y | y <- xs, y >= x]

Implement a parallel version of quicksort in Haskell using fork/join-parallelism. Your implementation should
have the following type signature: fj_qsort :: Ord a => [a] -> IO [a], and forks a new concurrent
thread for every recursive call.

b. (4 pnts.) Explain how the performance and scalability of fj_qsort differs from par_qsort. Which one is
more efficient, and why?

Solution to Question 3

a. (6 pnts.) This question is very similar to the ptreesum2 implementation of the test of June 17, 2016. ForkIO
but no joins: 2 points.

performwork :: Ord a => [a] -> MVar [a] -> IO ()
performwork [] join = do putMVar join []
performwork (x:xs) join = do

joinl <- newEmptyMVar
joinr <- newEmptyMVar
forkIO (performwork [y | y <- xs, y < x] joinl)
forkIO (performwork [y | y <- xs, y >= x] joinr)
left <- takeMVar joinl
right <- takeMVar joinr
putMVar join (left ++ x : right)

fj_qsort :: Ord a => [a] -> IO [a]
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fj_qsort xs = do
join <- newEmptyMVar
forkIO (performwork xs join)
result <- takeMVar join
return (result)

b. ( 4 pnts.) The par_qsort implementation is much faster, as it generates sparks. By using forkIO, the
fj_qsort algorithm is forced to construct and destruct threads on every recursive call, but par and pseq

only generate a spark: an opportunity for parallelism. Most sparks are discarded, leaving a more efficient
implementation. Any explanation that does not reason about sparks in a similar way is incorrect.
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Question 4 (20 points)

Consider the following class Loop and its method shiftLeft.

public class Loop {

private int[] a = new int[1000000];

public void shiftLeft () {
for (int i = 1; i < a.length; i++) {

int tmp = a[i];
a[i - 1] = tmp;

}
}

}

a. (3 pnts.) Discuss which dependencies there are between the iterations of the loop (if any). Motivate your
answer.

b. (3 pnts.) Discuss what sort of OpenMP-like annotations could be used to parallellise the execution of this
program.

c. (5 pnts.) Write a GPU kernel that has the same behaviour as the method shiftLeft.

Now consider the class Count and its method countZeroes.

public class Count {

private int[] a = new int[100000];

public int countZeroes() {
int c = 0;
for (int i = 0; i < a.length; i++) {

c = c + (a[i] == 0? 1 : 0);
}
return c;

}
}

d. (4 pnts.) Discuss how this method could be parallellised by using OpenMP-like annotations.

e. (5 pnts.) Write an OpenCL kernel that has the same behaviour as the method countZeroes.

Solution to Question 4

a. (3 pnts.) Forward loop carried dependency: read to a[i] in line 1 of loop body should happen before write to
a[i - 1] in line 2 of loop body of next iteration.

b. (3 pnts.) Simd annotation needed

c. (5 pnts.) Special care needed for tid == 0 (-1 points if no special case for tid=0, missing barrier: -3)

__kernel shiftLeft(int [] a) {
int tid = get_global_id();
int tmp;
if (tid > 0) {
tmp = a[tid];

}
barrier(CLK_GLOBAL_MEM_FENCE);
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if (tid > 0) {
a[tid - 1] = tmp;

}
}

. Alternative: replace tid by tid + 1.

d. (4 pnts.) Reduction: all threads share access to c

e. (5 pnts.) No atomic add: -3 points, unnecessary barrier: - 1 points.

__kernel countZeroes (int [] a) {

int tid = get_global_id();
global int c;

int tmp = a[tid] == 0 ? 1 : 0;
c.atomic_add(tmp);

}
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Question 5 (10 points)

a. (4 pnts.) Consider the following 2 Rust programs.

Program 1:

use std::thread;

fn main () {
let x = vec![5, 8, 10];
let t = thread::spawn (move || {

let y = x;
return y;

});
let y = t.join().unwrap();
println!("{}", x[0] + y[0]);

}

Program 2:

use std::thread;

fn main () {
let x = 5;
let t = thread::spawn (move || {

let y = x;
return y;

});
let y = t.join().unwrap();
println!("{}", x + y);

}

One of these two programs will not compile, the other one will. Explain which program will not compile,
and why, and for the other program, explain its effect.

b. (6 pnts.) Use the message passing mechanism of Rust to implement a distributed counter: the main thread
continuously sends messages, while in a separate thread, the receiver counts how many times it has received
a message.

Solution to Question 5

a. (4 pnts.) Program 1 will not compile. x is a vector, which is not copyable. Ownership of x is passed to the
new thread, thus the print statement in the main thread will fail (2 points). Program 2 will execute, and it
will print 10. Both x and y are integers, and thus ownership to them is freely copyable (2 points).

b. (6 pnts.)

use std::thread;
use std::sync::mpsc;

fn main () {
let (tx, rx) = mpsc::channel();
thread::spawn(move ||{
let mut c = 0;
loop {

rx.recv().unwrap();
c = c + 1;
}

});
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loop {
tx.send(1).unwrap();

}
}

No mut: -1 points, no loop: -2 points.


